21,487 research outputs found

    Structural studies of mesoporous ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} mixed oxides for catalytical applications

    Full text link
    In this work the synthesis of ZrO2_{2}-CeO2_{2} and ZrO2_{2}-CeO2_{2}/SiO2_{2} were developed, based on the process to form ordered mesoporous materials such as SBA-15 silica. The triblock copolymer Pluronic P-123 was used as template, aiming to obtain crystalline single phase walls and larger specific surface area, for future applications in catalysis. SAXS and XRD results showed a relationship between ordered pores and the material crystallization. 90% of CeO2_{2} leaded to single phase homogeneous ceria-zirconia solid solution of cubic fluorite structure (Fm3ˉ\bar{3}m). The SiO2_{2} addition improved structural and textural properties as well as the reduction behavior at lower temperatures, investigated by XANES measurements under H2_{2} atmosphere

    Cosmology with Varying Constants

    Full text link
    The idea of possible time or space variations of the `fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. Here, I present the current theoretical motivations and expectations for such variations, review the current observational status, and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.Comment: 14 pages, no figures. Essay to appear in Phil. Trans. Roy. Soc. Lond. A Triennial Series (Christmas 2002 Issue

    Multicolored Temperley-Lieb lattice models. The ground state

    Full text link
    Using inversion relation, we calculate the ground state energy for the lattice integrable models, based on a recently obtained baxterization of non trivial multicolored generalization of Temperley-Lieb algebras. The simplest vertex and IRF models are analyzed and found to have a mass gap.Comment: 15 pages 2 figure

    Removal of chromium from wastewater by adsorption and by biosorption

    Get PDF
    The objective of this work is the definition of an efficient biosorption system based on the ability of some microorganisms, metabolica1ly active or not, to retain heavy metals, specially the hexavalent fonn of Cr. Metallic solutions were passed through mini-colunms in which a biotilm was developed at pre-established conditions. As industrial wastewater usually contains organic and inorganic compounds, besides metallic ions, it would be desirable to co-extract several pollutants at the same time. The utilization of granular activated carbon (GAC) as a support for the biofilm seems to be advantageous, as it can retain other substances while the biofilm removes the heavy metal. To quantify the contribution of GAC to the overall removal of chromium, adsorption studies were carried out with the determination the effect of pH and of the presence of concurrent species on the adsorption isotherms. Biosorption studies were done with three different bacteria, Pseudomonasjluorescens, Escherichia coli and Arthrobacter viscosus. Among microorganisms, bacteria are particularly interesting for the purpose as they are able to excrete polysaccharides allowing a good adhesion to the support, implementing the retention capacity of the biosystem and protecting the cells from the xenobiotic effect of the heavy metal ions. Removal efficiencies were compared between the three biosystems

    On the Stability of Fundamental Couplings in the Galaxy

    Get PDF
    Astrophysical tests of the stability of Nature's fundamental couplings are a key probe of the standard paradigms in fundamental physics and cosmology. In this report we discuss updated constraints on the stability of the fine-structure constant α\alpha and the proton-to-electron mass ratio μ=mp/me\mu=m_p/m_e within the Galaxy. We revisit and improve upon the analysis by Truppe {\it et al.} by allowing for the possibility of simultaneous variations of both couplings and also by combining them with the recent measurements by Levshakov {\it et al.} By considering representative unification scenarios we find no evidence for variations of α\alpha at the 0.4 ppm level, and of μ\mu at the 0.6 ppm level; if one uses the Levshakov bound on μ\mu as a prior, theα\alpha bound is improved to 0.1 ppm. We also highlight how these measurements can constrain (and discriminate among) several fundamental physics paradigms.Comment: 7 pages, 1 figur

    Bayesian Updating Rules in Continuous Opinion Dynamics Models

    Full text link
    In this article, I investigate the use of Bayesian updating rules applied to modeling social agents in the case of continuos opinions models. Given another agent statement about the continuous value of a variable xx, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a Uniform distribution. This represents the idea the other agent might have no idea about what he is talking about. The effect of updating only the first moments of the distribution will be studied. and we will see that this generates results similar to those of the Bounded Confidence models. By also updating the second moment, several different opinions always survive in the long run. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.Comment: 14 pages, 5 figures, presented at SigmaPhi200

    Constraining the evolution of the CMB temperature with SZ measurements from Planck data

    Full text link
    The CMB temperature-redshift relation, T_CMB(z)=T_0(1+z), is a key prediction of the standard cosmology, but is violated in many non standard models. Constraining possible deviations to this law is an effective way to test the LambdaCDM paradigm and to search for hints of new physics. We have determined T_CMB(z), with a precision up to 3%, for a subsample (104 clusters) of the Planck SZ cluster catalog, at redshift in the range 0.01-- 0.94, using measurements of the spectrum of the Sunyaev Zel'dovich effect obtained from Planck temperature maps at frequencies from 70 to 353 GHz. The method adopted to provide individual determinations of T_CMB(z) at cluster redshift relies on the use of SZ intensity change, Delta I_SZ(nu), at different frequencies, and on a Monte-Carlo Markov Chain approach. By applying this method to the sample of 104 clusters, we limit possible deviations of the form T_CMB(z)=T_0(1+z)^(1-beta) to be beta= 0.022 +/- 0.018, at 1 sigma uncertainty, consistent with the prediction of the standard model. Combining these measurements with previously published results we get beta=0.016+/-0.012.Comment: submitted to JCAP, 21 pages, 8 figure

    Dimension minimization of a quantum automaton

    Full text link
    A new model of a Quantum Automaton (QA), working with qubits is proposed. The quantum states of the automaton can be pure or mixed and are represented by density operators. This is the appropriated approach to deal with measurements and dechorence. The linearity of a QA and of the partial trace super-operator, combined with the properties of invariant subspaces under unitary transformations, are used to minimize the dimension of the automaton and, consequently, the number of its working qubits. The results here developed are valid wether the state set of the QA is finite or not. There are two main results in this paper: 1) We show that the dimension reduction is possible whenever the unitary transformations, associated to each letter of the input alphabet, obey a set of conditions. 2) We develop an algorithm to find out the equivalent minimal QA and prove that its complexity is polynomial in its dimension and in the size of the input alphabet.Comment: 26 page

    Anisotropic linear and non-linear excitonic optical properties of buckled monolayer semiconductors

    Full text link
    The optical properties of two-dimensional materials are exceptional in several respects. They are highly anisotropic and frequently dominated by excitonic effects. Dipole-allowed second order non-linear optical properties require broken inversion symmetry. Hence, several two-dimensional materials show strong in-plane (IP) non-linearity but negligible out-of-plane (OOP) response due to vertical symmetry. By considering buckled hexagonal monolayers, we analyze the critical role of broken vertical symmetry on their excitonic optical response. Both linear as well as second order shift current and second harmonic response are studied. We demonstrate that substantial OOP non-linear response can be obtained, in particular, through off-diagonal tensor elements coupling IP excitation to OOP response. Our findings are explained by excitonic selection rules for OOP response and the impact of dielectric screening on excitons is elucidated.Comment: 20 pages, 8 figure
    • …
    corecore