34,485 research outputs found
Social Effects in Science: Modelling Agents for a Better Scientific Practice
Science is a fundamental human activity and we trust its results because it
has several error-correcting mechanisms. Its is subject to experimental tests
that are replicated by independent parts. Given the huge amount of information
available, scientists have to rely on the reports of others. This makes it
possible for social effects to influence the scientific community. Here, an
Opinion Dynamics agent model is proposed to describe this situation. The
influence of Nature through experiments is described as an external field that
acts on the experimental agents. We will see that the retirement of old
scientists can be fundamental in the acceptance of a new theory. We will also
investigate the interplay between social influence and observations. This will
allow us to gain insight in the problem of when social effects can have
negligible effects in the conclusions of a scientific community and when we
should worry about them.Comment: 14 pages, 5 figure
Large-Eddy Simulation closures of passive scalar turbulence: a systematic approach
The issue of the parameterization of small scale (``subgrid'') turbulence is
addressed in the context of passive scalar transport. We focus on the Kraichnan
advection model which lends itself to the analytical investigation of the
closure problem. We derive systematically the dynamical equations which rule
the evolution of the coarse-grained scalar field. At the lowest-order
approximation in , being the characteristic scale of the filter
defining the coarse-grained scalar field and the inertial range separation,
we recover the classical eddy-diffusivity parameterization of small scales. At
the next-leading order a dynamical closure is obtained. The latter outperforms
the classical model and is therefore a natural candidate for subgrid modelling
of scalar transport in generic turbulent flows.Comment: 10 LaTex pages, 1 PS figure. Changes: comments added below previous
(3.10); Previous (3.16) has been corrected; Minor changes in the conclusion
Exploiting Resolution-based Representations for MaxSAT Solving
Most recent MaxSAT algorithms rely on a succession of calls to a SAT solver
in order to find an optimal solution. In particular, several algorithms take
advantage of the ability of SAT solvers to identify unsatisfiable subformulas.
Usually, these MaxSAT algorithms perform better when small unsatisfiable
subformulas are found early. However, this is not the case in many problem
instances, since the whole formula is given to the SAT solver in each call. In
this paper, we propose to partition the MaxSAT formula using a resolution-based
graph representation. Partitions are then iteratively joined by using a
proximity measure extracted from the graph representation of the formula. The
algorithm ends when only one partition remains and the optimal solution is
found. Experimental results show that this new approach further enhances a
state of the art MaxSAT solver to optimally solve a larger set of industrial
problem instances
The extended minimal geometric deformation of SU() dark glueball condensates
The extended minimal geometric deformation (EMGD) procedure, in the
holographic membrane paradigm, is employed to model stellar distributions that
arise upon self-interacting scalar glueball dark matter condensation. Such
scalar glueballs are SU() Yang-Mills hidden sectors beyond the Standard
Model. Then, corrections to the gravitational wave radiation, emitted by
SU() EMGD dark glueball stars mergers, are derived, and their respective
spectra are studied in the EMGD framework, due to a phenomenological brane
tension with finite value. The bulk Weyl fluid that drives the EMGD is then
proposed to be experimentally detected by enhanced windows at the eLISA and
LIGO.Comment: 9 pages, 7 figure
Extended quantum portrait of MGD black holes and information entropy
The extended minimal geometric deformation (EMGD) is employed on the fluid
membrane paradigm, to describe compact stellar objects as Bose--Einstein
condensates (BEC) consisting of gravitons. The black hole quantum portrait,
besides deriving a preciser phenomenological bound for the fluid brane tension,
is then scrutinized from the point of view of the configurational entropy. It
yields a range for the critical density of the EMGD BEC, whose configurational
entropy has global minima suggesting the configurational stability of the EMGD
BEC.Comment: 9 pages, 7 figures, matches the published versio
- …