40 research outputs found

    On optimal quantum codes

    Full text link
    We present families of quantum error-correcting codes which are optimal in the sense that the minimum distance is maximal. These maximum distance separable (MDS) codes are defined over q-dimensional quantum systems, where q is an arbitrary prime power. It is shown that codes with parameters [[n,n-2d+2,d]]_q exist for all 3 <= n <= q and 1 <= d <= n/2+1. We also present quantum MDS codes with parameters [[q^2,q^2-2d+2,d]]_q for 1 <= d <= q which additionally give rise to shortened codes [[q^2-s,q^2-2d+2-s,d]]_q for some s.Comment: Accepted for publication in the International Journal of Quantum Informatio

    Efficient Quantum Circuits for Non-Qubit Quantum Error-Correcting Codes

    Get PDF
    We present two methods for the construction of quantum circuits for quantum error-correcting codes (QECC). The underlying quantum systems are tensor products of subsystems (qudits) of equal dimension which is a prime power. For a QECC encoding k qudits into n qudits, the resulting quantum circuit has O(n(n-k)) gates. The running time of the classical algorithm to compute the quantum circuit is O(n(n-k)^2).Comment: 18 pages, submitted to special issue of IJFC

    Thresholds for Linear Optics Quantum Computing with Photon Loss at the Detectors

    Full text link
    We calculate the error threshold for the linear optics quantum computing proposal by Knill, Laflamme and Milburn [Nature 409, pp. 46--52 (2001)] under an error model where photon detectors have efficiency <100% but all other components -- such as single photon sources, beam splitters and phase shifters -- are perfect and introduce no errors. We make use of the fact that the error model induced by the lossy hardware is that of an erasure channel, i.e., the error locations are always known. Using a method based on a Markov chain description of the error correction procedure, our calculations show that, with the 7 qubit CSS quantum code, the gate error threshold for fault tolerant quantum computation is bounded below by a value between 1.78% and 11.5% depending on the construction of the entangling gates.Comment: 7 pages, 6 figure

    Engineering Functional Quantum Algorithms

    Get PDF
    Suppose that a quantum circuit with K elementary gates is known for a unitary matrix U, and assume that U^m is a scalar matrix for some positive integer m. We show that a function of U can be realized on a quantum computer with at most O(mK+m^2log m) elementary gates. The functions of U are realized by a generic quantum circuit, which has a particularly simple structure. Among other results, we obtain efficient circuits for the fractional Fourier transform.Comment: 4 pages, 2 figure

    Quantum algorithm for the Boolean hidden shift problem

    Get PDF
    The hidden shift problem is a natural place to look for new separations between classical and quantum models of computation. One advantage of this problem is its flexibility, since it can be defined for a whole range of functions and a whole range of underlying groups. In a way, this distinguishes it from the hidden subgroup problem where more stringent requirements about the existence of a periodic subgroup have to be made. And yet, the hidden shift problem proves to be rich enough to capture interesting features of problems of algebraic, geometric, and combinatorial flavor. We present a quantum algorithm to identify the hidden shift for any Boolean function. Using Fourier analysis for Boolean functions we relate the time and query complexity of the algorithm to an intrinsic property of the function, namely its minimum influence. We show that for randomly chosen functions the time complexity of the algorithm is polynomial. Based on this we show an average case exponential separation between classical and quantum time complexity. A perhaps interesting aspect of this work is that, while the extremal case of the Boolean hidden shift problem over so-called bent functions can be reduced to a hidden subgroup problem over an abelian group, the more general case studied here does not seem to allow such a reduction.Comment: 10 pages, 1 figur

    Simulating Hamiltonians in Quantum Networks: Efficient Schemes and Complexity Bounds

    Get PDF
    We address the problem of simulating pair-interaction Hamiltonians in n node quantum networks where the subsystems have arbitrary, possibly different, dimensions. We show that any pair-interaction can be used to simulate any other by applying sequences of appropriate local control sequences. Efficient schemes for decoupling and time reversal can be constructed from orthogonal arrays. Conditions on time optimal simulation are formulated in terms of spectral majorization of matrices characterizing the coupling parameters. Moreover, we consider a specific system of n harmonic oscillators with bilinear interaction. In this case, decoupling can efficiently be achieved using the combinatorial concept of difference schemes. For this type of interactions we present optimal schemes for inversion.Comment: 19 pages, LaTeX2

    On Approximately Symmetric Informationally Complete Positive Operator-Valued Measures and Related Systems of Quantum States

    Full text link
    We address the problem of constructing positive operator-valued measures (POVMs) in finite dimension nn consisting of n2n^2 operators of rank one which have an inner product close to uniform. This is motivated by the related question of constructing symmetric informationally complete POVMs (SIC-POVMs) for which the inner products are perfectly uniform. However, SIC-POVMs are notoriously hard to construct and despite some success of constructing them numerically, there is no analytic construction known. We present two constructions of approximate versions of SIC-POVMs, where a small deviation from uniformity of the inner products is allowed. The first construction is based on selecting vectors from a maximal collection of mutually unbiased bases and works whenever the dimension of the system is a prime power. The second construction is based on perturbing the matrix elements of a subset of mutually unbiased bases. Moreover, we construct vector systems in \C^n which are almost orthogonal and which might turn out to be useful for quantum computation. Our constructions are based on results of analytic number theory.Comment: 29 pages, LaTe
    corecore