16 research outputs found

    Clinical and laboratory characterization of patients with localized scleroderma and response to UVA-1 phototherapy: In vivo and in vitro skin models

    Get PDF
    Background/Purpose Localized scleroderma (LS) is a rare disease leading to progressive hardening and induration of the skin and subcutaneous tissues. LS is responsive to UVA-1 phototherapy, though its exact mechanism of action dermal fibrosis is yet to be fully elucidated. We aimed to investigate the molecular changes induced by UVA-1 rays in human primary fibroblasts cultures. Methods A total of 16 LS patients were treated with medium-dose UVA-1 phototherapy. At baseline, during and after therapy, Localized Scleroderma Assessment Tool, Dermatology Life Quality Index and lesions' staging and mapping were performed along with high-frequency ultrasound (HFUS) examination for dermal thickness assessment. Gene expression analysis for 23 mRNA transcripts, in vitro UVA-1 irradiation and viability tests were realized on lesional fibroblasts' primary cultures, before and 3 months after therapy. Results The dermal thickness, the LoSCAT and the DLQI progressively decreased starting from the last phototherapy session up to the 6 and 9 month follow-ups (-57% and -60%, respectively). Molecular gene analysis (rt-PCR) revealed that UVA-1 phototherapy exerts multiple effects: the activation of specific anti-fibrotic pathways (e.g., overexpression of CTHRC1 and metalloproteases 1, 2, 7, 8, 9, 12, suppression of TIMP-1), the downregulation of peculiar pro-fibrotic pathways (e.g., downregulation of TGF-ss, TGF-ssrII, Grb2, SMAD 2/3, TNRSF12A, CTGF) through a significant overexpression of IL-1ss; the stabilization of collagen synthesis acting on genes COL1A1, COL3A1, COL8A1, COL10A1, COL12A1. Conclusion UVA-1 phototherapy adds significant benefits in local tissue remodeling, rebalancing the alteration between pro-fibrotic and anti-fibrotic pathways; these changes can be well monitored by HFUS. © 2022 The Authors

    Impaired spermatogenesis in the twitcher mouse: A morphological evaluation from the seminiferous tubules to epididymal transit

    No full text
    Spermatogenesis is a complex process of proliferation and differentiation during male germ cell development whereby undifferentiated spermatogonial germ cells evolve into maturing spermatozoa. In this developmental process the interactions between different cell types are finely regulated, hence any disruption in these relationships leads to male infertility. The twitcher mouse, the murine model of Krabbe disease, is characterized by deficiency of galactosylceramidase, an enzyme also involved in the metabolism of the galactosyl-alkyl-acyl-glycerol, the precursor of sulfogalactosyl-alkyl-acyl-glycerol, the most abundant glycolipid in spermatozoa. Twitcher mice are sterile due to alterations of spermatogenesis resulting in the production of spermatozoa with abnormally swollen acrosomes and bent flagella, mainly at the midpiece–principal piece junction. The current study employs light, fluorescence, and electron microscopy to examine the defective spermiogenesis leading to the morphological abnormalities of mature sperm. This study reveals that alterations in germ cell development can be initially detected at the stage VIII and IX of spermatogenesis. The disrupted spermatogenetic process leads to a reduced number of elongating spermatids and spermatozoa in these mutant animals. Electron microscopy analysis demonstrates major acrosomal and chromatin condensation defects in the mutants. In addition, in twitcher mice, the epididymal architecture is impaired, with stereocilia of caput and corpus broken, detached and completely spread out into the lumen. These findings indicate that seminolipid expression is crucial for proper development of spermatocytes and spermatids and for their normal differentiation into mature spermatozoa. Abbreviations: GALC: galactosylceramidase; GalAAG: galactosyl-alkyl-acyl-glycerol; SGalAAG: sulfogalactosylalkylacylglycerol; PND: postnatal day; PAS: periodic acid-Schiff stain; TEM: transmission electron microscopy; SEM: scanning electron microscopy; PFA: paraformaldheyd

    Photogrammetry as a promising tool to unveil marine caves’ benthic assemblages

    No full text
    Abstract Traditionally, monitoring approaches to survey marine caves have been constrained by equipment limitations and strict safety protocols. Nowadays, the rise of new approaches opens new possibilities to describe these peculiar ecosystems. The current study aimed to explore the potential of Structure from Motion (SfM) photogrammetry to assess the abundance and spatial distribution of the sessile benthic assemblages inside a semi-submerged marine cave. Additionally, since impacts of recent date mussel Lithophaga lithophaga illegal fishing were recorded, a special emphasis was paid to its distribution and densities. The results of SfM were compared with a more “traditional approach”, by simulating photo-quadrats deployments over the produced orthomosaics. A total of 22 sessile taxa were identified, with Porifera representing the dominant taxa within the cave, and L. lithophaga presenting a density of 88.3 holes/m2. SfM and photo-quadrats obtained comparable results regarding species richness, percentage cover of identified taxa and most of the seascape metrics, while, in terms of taxa density estimations, photo-quadrats highly overestimated their values. SfM resulted in a suitable non-invasive technique to record marine cave assemblages. Seascape indexes proved to be a comprehensive way to describe the spatial pattern of distribution of benthic organisms, establishing a useful baseline to assess future community shifts

    Matrix metalloproteinases and their inhibitors in human cumulus and granulosa cells as biomarkers for oocyte quality estimation

    No full text
    Objective: To study the molecular profile of metalloproteinases and their tissue inhibitors in granulosa and cumulus cells in a subset of fertile and infertile women. Design: Molecular study with granulosa and cumulus cells. Setting: University hospital. Patient(s): Forty-four women undergoing assisted reproductive techniques for female infertility factor, with partners having a normal spermiogram and 15 normally fertile women with male partner affected by severe oligoasthenoteratozoospermia or nonobstructive azoospermia. Intervention(s): In vitro fertilization. Main Outcome Measurement(s): We investigated gene expression level of metalloproteinases (MMP2, MMP9, MMP11) and their tissue inhibitors (TIMP1, TIMP2) by means of quantitative reverse-transcription polymerase chain reaction, protein quantification by means of Western blot, and localization by means of immunofluorescence. Result(s): We firstly validated HPRT1 as the most reliable housekeeping gene enabling correct gene expression analysis in both granulosa and cumulus cells. Gene expression, Western blot, and immunofluorescence analysis of MMP2, MMP9, and MMP11 and their tissue inhibitors TIMP1 and TIMP2 demonstrated that these enzymes are finely tuned in these cells. MMP9 is specifically expressed only in granulosa, whereas MMP2 is more expressed in cumulus and granulosa cells in cases of reduced ovarian response and decreased fertilization rate. Conclusion(s): This study sheds light on MMP and TIMP expression in granulosa and cumulus cells, and it may help in understanding the fine regulation of oocyte maturation inside the follicle. Although further studies are needed to fully understand the molecular mechanisms involved in these processes, our findings may be useful in the identification of biomarkers of oocyte maturation, competence acquiring, and fertilization

    Increased expression of neurogenic factors in uterine fibroids

    No full text
    STUDY QUESTION: Are selective markers for the neuronal differentiation such as microtubule-associated protein 2 (MAP-2) and synaptophysin (SYP) as well as the nerve growth factor (NGF) expressed by fibroids, myometrium and eutopic endometrium? SUMMARY ANSWER: Neuronal markers NGF, MAP-2 and SYP are highly expressed in fibroids compared with matched myometrium, and this neurogenic pathway is upregulated by tumor necrosis factor (TNF) alpha in cultured smooth muscle cells (SMCs). WHAT IS KNOWN ALREADY: Uterine fibroids or leiomyomas are the most common benign tumors, accounting for approximately one-third of hysterectomies. The present trend is to improve the medical treatment avoiding surgery, also for fertility sparing; hence, the pathogenic mechanisms are investigated, aiming to develop new therapeutic strategy. STUDY DESIGN, SIZE, DURATION: This laboratory-based case-control study is focused on fibroids and myometrial specimens obtained between 2015 and 2017 from 15 women of reproductive age at the proliferative phase of the menstrual cycle. Leiomyomas, matched myometrium and endometrium from each woman were analyzed. Control endometrium was obtained from women undergoing surgery for ovarian cyst (n = 15). PARTICIPANTS/MATERIALS, SETTING, METHODS: qRT-PCR, western blotting and immunostaining were applied to evaluate the expression of neurogenic markers; the effects of TNF on NGF, MAP-2 and SYP expression in cultured SMCs from leiomyomas and matched myometrium were analyzed. MAIN RESULTS AND THE ROLE OF CHANCE: qRT-PCR analyses using tissues from clinical patients showed that the levels of NGF, MAP-2 and SYP mRNA were significantly higher in uterine leiomyomas compared with their matched myometrium (P < 0.05), whereas only NGF was significantly increased in eutopic endometrium compared with healthy endometrium. In primary SMCs, isolated from fibroids or from the adjacent myometrium, NGF, MAP-2 and SYP mRNA expression were significantly increased by TNF treatment (P < 0.05). Finally, human endometrial stromal cells prepared from the endometrium of patients affected by uterine fibroids display higher TNF expression (P < 0.001). LIMITATIONS, REASONS FOR CAUTION: qRT-PCR analysis and immunofluorescence validation are robust methods demonstrating a clear upregulation of neurogenic factors in leiomyomas, even though additional studies are needed to establish a correlation between increased neuronal gene expression and degree of pain, as well as the involvement of inflammation mediators in the development of the neurogenic unhinge. Therefore, more in vivo studies are needed to confirm the results achieved from primary cultured SMCs. WIDER IMPLICATIONS OF THE FINDINGS: The increased expression of neurogenic factors in uterine fibroids and endometrium may contribute to explain the painful stimuli. Accordingly, these neurogenic pathways may represent potential therapeutic avenues to treat the fibroid-related disorders. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by research grants from the University of Siena. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A. © 2019 The Author(s) 2019. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserve

    What’s the key for success? Translocation, growth and thermal stress mitigation in the Mediterranean coral Cladocora caespitosa (Linnaeus, 1767)

    Get PDF
    Marine heat waves (MHWs) are affecting corals populations, advocating their inclusion in restoration actions since conservation measures may be not sufficient. Cladocora caespitosa is a Mediterranean reef-building, long-living species, with low recruitment rate and high juvenile mortality, leading to the need for its inclusion in international and European legislations. The aim of this study, conducted in the southern Tyrrhenian Sea, was to test the translocation of several C. caespitosa colonies thriving on an artificial substrate intended for demolition, applying transplantation techniques. Thirty-four colonies were transplanted in May 2018, and monitored over 4 years, to check for their persistence and health status. The shaded position of the recipient site resulted adequate, considering that colony survival rates were as high as 82.4%, 70.6% and 55.9% in October 2018, January 2020 and October 2022, respectively. Colonies presented signs of suffering only after the high temperatures occurred during summer 2022, with a decreasing rate of -2.5 ± 0.4 corallite/month. To better interpret the documented survival rates, 40 fragments of C. caespitosa were reared in aquaria to test temperature and light effects on growth rates and resistance to thermal stress, simulating a MHW and exacerbating the dim-light natural conditions of the recipient site, exposing half of the fragments to complete darkness. Only bigger fragments produced new corallites, with a rate of 1.3 ± 0.3 corallites/month, like the natural growth rate obtained in the field before the thermal anomaly, highlighting the suitability of ex-situ rearing as a potential tool to supply restoration project. After 5-days at 28.5°C, all fragments survived, despite showing tissue retraction, shorter tentacles, lower responsiveness, and zooxanthellae density variation. Overall, our results highlighted a promising plasticity of C. caespitosa in the field, representing a good candidate for restoration purposes. In aquaria this adaptive potential has been tested on a single genotype and more tests are needed to assess the intraspecific variability of these responses. A first insight into the species-based siting selection was provided to ensure the success of a restoration action. Our results point out the importance of knowing life history traits and ecological optima to design proper management and restoration measures
    corecore