586 research outputs found

    The Role of Uncertainty in CO2 Emissions Inventories

    Get PDF
    We have greater certainty for what has happened in the past than for what will happen in the future. Uncertainty on the impact and value of emissions can be very large. Given all of the elements of uncertainty, we are challenged to set global targets for limiting the environmental impact of emissions, to distribute those targets among the many Parties responsible for emissions, to evaluate the trajectories toward targets, to understand the risk involved in not meeting targets, to motivate the collective efforts and burden sharing or trading, and to verify that targets have been achieved

    A U.S. Carbon Cycle Science Plan: First Meeting of the Carbon Cycle Science Working Group; Washington, D. C., 17–18 November 2008

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95400/1/eost16754.pd

    Secondary literacy across the curriculum: Challenges and possibilities

    Get PDF
    This paper discusses the challenges and possibilities attendant upon successfully implementing literacy across the curriculum initiatives – or ‘school language policies’ as they have come to be known - particularly at the secondary or high school level. It provides a theoretical background to these issues, exploring previous academic discussions of school language policies, and highlights key areas of concern as well as opportunity with respect to school implementation of such policies. As such, it provides a necessary conceptual background to the subsequent papers in this special issue, which focus upon the Secondary Schools’ Literacy Initiative (SSLI) – a New Zealand funded programme that aims to establish cross-curricular language and literacy policies in secondary schools

    Uncertainty in an emissions-constrained world

    Get PDF
    Our study focuses on uncertainty in greenhouse gas (GHG) emissions from anthropogenic sources, including land use and land-use change activities. We aim to understand the relevance of diagnostic (retrospective) and prognostic (prospective) uncertainty in an emissions-temperature setting that seeks to constrain global warming and to link uncertainty consistently across temporal scales. We discuss diagnostic and prognostic uncertainty in a systems setting that allows any country to understand its national and near-term mitigation and adaptation efforts in a globally consistent and long-term context. Cumulative emissions are not only constrained and globally binding but exhibit quantitative uncertainty; and whether or not compliance with an agreed temperature target will be achieved is also uncertain. To facilitate discussions, we focus on two countries, the USA and China. While our study addresses whether or not future increase in global temperature can be kept below 2, 3, or 4 degrees C targets, its primary aim is to use those targets to demonstrate the relevance of both diagnostic and prognostic uncertainty. We show how to combine diagnostic and prognostic uncertainty to take more educated (precautionary) decisions for reducing emissions toward an agreed temperature target; and how to perceive combined diagnostic and prognostic uncertainty-related risk. Diagnostic uncertainty is the uncertainty contained in inventoried emission estimates and relates to the risk that true GHG emissions are greater than inventoried emission estimates reported in a specified year; prognostic uncertainty refers to cumulative emissions between a start year and a future target year, and relates to the risk that an agreed temperature target is exceeded

    Quantifying greenhouse gas emissions

    Get PDF
    The assessment of greenhouse gases (GHGs) and air pollutants emitted to and removed from the atmosphere ranks high on international political and scientific agendas. Growing international concern and cooperation regarding the climate change problem have increased the need to consider the uncertainty in inventories of GHG emissions. The approaches to address uncertainty discussed in this special issue reflect attempts to improve national inventories, not only for their own sake but also from a wider, system analytic perspective. They seek to strengthen the usefulness of national emission inventories under a compliance and/or global monitoring and reporting framework. The papers in this special issue demonstrate the benefits of including inventory uncertainty in policy analyses. The issues raised by the authors and featured in their papers, along with the role that uncertainty analysis plays in many of their arguments, highlight the challenges and the importance of dealing with uncertainty. While the Intergovernmental Panel on Climate Change (IPCC) clearly stresses the value of conducting uncertainty analyses and offers guidance on executing them, the arguments made here in favor of performing these studies go well beyond any suggestions made by the IPCC to date. Improving and conducting uncertainty analyses are needed to develop a clear understanding and informed policy. Uncertainty matters and is key to many issues related to inventorying and reducing emissions. Considering uncertainty helps to avoid situations that can create a false sense of certainty or lead to invalid views of subsystems. Dealing proactively with uncertainty allows for the generation of useful knowledge that the international community should have to hand while strengthening the 2015 Paris Agreement, which had been agreed at the 21st Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC). However, considering uncertainty does not come free. Proper treatment of uncertainty is demanding because it forces us to take the step from “simple to complex” and to grasp a holistic system view. Only, thereafter, can we consider potential simplifications. That is, comprehensive treatment of uncertainty does not necessarily offer quick or easy solutions for policymakers. This special issue brings together 13 papers that resulted from the 2015 (4th) International Workshop on Uncertainty in Atmospheric Emissions, in Cracow, Poland. While they deal with many different aspects of the uncertainty in emission estimates, they are guided by the same principal question: “What GHGs shall be verified at what spatio-temporal scale to support conducive legislation at local and national scales, while ensuring effective governance at the global scale?” This question is at the heart of mitigation and adaptation. It requires an understanding of the entire system of GHG sources and sinks, their spatial characteristics and the temporal scales at which they react and interact, the uncertainty (accuracy and/or precision) with which fluxes can be measured, and last but not least, the consequences that follow from all of the aforementioned aspects, for policy actors to frame compliance and/or global monitoring and reporting agreements. This bigger system context serves as a reference for the papers in the special issue, irrespective of their spatio-temporal focus, and is used as a guide for the reader
    corecore