146 research outputs found

    Programmed cell death in retinal degeneration - Targeting apoptosis in photoreceptors as potential therapy for retinal degeneration

    Get PDF
    Retinal degenerations are the major cause of incurable blindness characterized by loss of retinal photoreceptor cells. Several genes causing these genetic diseases have been identified, however the molecular characterization of a high percentage of patients affected by retinitis pigmentosa (RP), a common form of retinal degeneration, is still unknown. The high genetic heterogeneity of these diseases hampers the comprehension of the pathogenetic mechanism causing photoreceptor cell death. Therapies are not available yet and for this reason there is a lot of interest in understanding the etiology and the pathogenesis of these disorders at a cellular and molecular level. Some common features have been identified in different forms of RP. Apoptosis was reported to be the final outcome in all RP animal models and patients analyzed so far. We recently identified two apoptotic pathways coactivated in photoreceptors undergoing cell death in the retinal degeneration (rd1) mouse model of autosomal recessive RP. Our studies opened new perspectives together with many questions that require deeper analyses in order to take advantage of this knowledge and develop new therapeutic approaches. We believe that minimizing cell demise may represent a promising curing strategy that needs to be exploited for retinal degeneration

    PEDF Promotes Retinal Neurosphere Formation and Expansion In Vitro

    Get PDF
    The retina is subject to degenerative conditions leading to blindness. Although retinal regeneration is possible in lower vertebrates, it does not occur in the adult mammalian retina. Retinal stem cell (RSC) research offers unique opportunities for developing clinical application for therapy. The ciliary body of adult mammals represents a source of quiescent RSC. These neural progenitors have a limited self-renewal potential in vitro but this can be improved by mitogens. Pigment Epithelium Derived Factor (PEDF), a member of the serpin gene family, is synthesized and secreted by retinal pigment epithelium (RPE) cells. We tested combinations of PEDF with fibroblast growth factor (FGF) during RSC growth to evaluate self-renewal and subsequent differentiation into retinal-like neuronal cell types. Medium supplemented with FGF + PEDF enhanced the RSC yield and more interestingly allowed expansion of the culture by increasing secondary retinal neurospheres after the 1st passage. This effect was accompanied by cell proliferation as revealed by BrdU incorporation. PEDF usage did not affect rod-like differentiation potential. This was demonstrated by immunofluorescence analysis of Rhodopsin and Pde6b that were found similarly expressed in cells derived from FGF or FGF + PEDF cultured RSC. Our studies suggest a possible application of PEDF in Retinal Stem Cell culture and transplantation

    Molecular mechanisms underlying inherited photoreceptor degeneration as targets for therapeutic intervention

    Get PDF
    Retinitis pigmentosa (RP) is a form of retinal degeneration characterized by primary degeneration of rod photoreceptors followed by a secondary cone loss that leads to vision impairment and finally blindness. This is a rare disease with mutations in several genes and high genetic heterogeneity. A challenging effort has been the characterization of the molecular mechanisms underlying photoreceptor cell death during the progression of the disease. Some of the cell death pathways have been identified and comprise stress events found in several neurodegenerative diseases such as oxidative stress, inflammation, calcium imbalance and endoplasmic reticulum stress. Other cell death mechanisms appear more relevant to photoreceptor cells, such as high levels of cGMP and metabolic changes. Here we review some of the cell death pathways characterized in the RP mutant retina and discuss preclinical studies of therapeutic approaches targeting the molecular outcomes that lead to photoreceptor cell demise

    Stem cells as source for retinal pigment epithelium transplantation

    Get PDF
    Inherited maculopathies, age related macular degeneration and some forms of retinitis pigmentosa are associated with impaired function or loss of the retinal pigment epithelium (RPE). Among potential treatments, transplantation approaches are particularly promising. The arrangement of RPE cells in a well-defined tissue layer makes the RPE amenable to cell or tissue sheet transplantation. Different cell sources have been suggested for RPE transplantation but the development of a clinical protocol faces several obstacles. The source should provide a sufficient number of cells to at least recover the macula area. Secondly, cells should be plastic enough to be able to integrate in the host tissue. Tissue sheets should be considered as well, but the substrate on which RPE cells are cultured needs to be carefully evaluated. Immunogenicity can also be an obstacle for effective transplantation as well as tumorigenicity of not fully differentiated cells. Finally, ethical concerns may represent drawbacks when embryo-derived cells are proposed for RPE transplantation. Here we discuss different cell sources that became available in recent years and their different properties. We also present data on a new source of human RPE. We provide a protocol for RPE differentiation of retinal stem cells derived from adult ciliary bodies of post-mortem donors. We show molecular characterization of the in vitro differentiated RPE tissue and demonstrate its functionality based on a phagocytosis assay. This new source may provide tissue for allogenic transplantation based on best matches through histocompatibility testing

    The Ocular Albinism type 1 (OA1) G-Protein Coupled Receptor functions with MART-1 at early stages of melanogenesis to control melanosome identity and composition

    Get PDF
    OA1 (GPR143; GPCR, G-protein-coupled receptor), the protein product of the ocular albinism type 1 gene, encodes a pigment-cell-specific GPCR that localizes intracellularly to melanosomes. OA1 mutations result in ocular albinism due to alterations in melanosome formation, suggesting that OA1 is a key player in the biogenesis of melanosomes. To address the function of OA1 in melanosome biogenesis, we have used siRNA inactivation and combined morphological and biochemical methods to investigate melanosome ultrastructure, melanosomal protein localization and expression in human pigmented melanocytic cells. OA1 loss of function leads to decreased pigmentation and causes formation of enlarged aberrant premelanosomes harboring disorganized fibrillar structures and displaying proteins of mature melanosomes and lysosomes at their membrane. Moreover, we show that OA1 interacts biochemically with the premelanosomal protein MART-1. Inactivation of MART-1 by siRNA leads to a decreased stability of OA1 and is accompanied by similar defects in premelanosome biogenesis and composition. These data show for the first time that melanosome composition and identity are regulated at early stages by OA1 and that MART-1 likely acts as an escort protein for this GPCR

    Activation of Bax in Three Models of Retinitis Pigmentosa

    Get PDF
    PURPOSE:The process of photoreceptor cell death in retinitis pigmentosa is still not well characterized, and identification of common mechanisms will be instrumental for development of therapeutic strategies. Here we investigated activation of Bax in rd1, P23H transgenic, and Rho knockout retinas. METHODS:Bax activation was evaluated by immunofluorescence using anti-activated Bax-specific antibodies and by Western blotting on mitochondrial protein extracts. Knockdown of cathepsin D, calpain 1, and calpain 2 was achieved by short hairpin RNA (shRNA) delivery in rd1 mutant photoreceptors cells differentiated from retinal neurospheres. The mechanism of Bax activation through calpains was evaluated in vivo by intravitreal injection of calpastatin. RESULTS:We defined activation and mitochondrial localization of Bax as well as activation of calpains and cathepsin D in the three models of retinitis pigmentosa. Taking advantage of an in vitro culture system for rd1 mutant photoreceptors, we unraveled the mechanism of Bax activation. We demonstrated that calpain 1 and cathepsin D contributed to activation of Bax and to apoptosis-inducing factor (Aif) nuclear translocation. In vivo interference with calpain activity blocks Bax activation in the rd1 and Rho knockout retinas and reduces activation in the P23H transgenic retina. CONCLUSIONS:Activation of Bax was observed in all three models of retinitis pigmentosa and leads to neurodamage by localization at the mitochondrion. Our data suggest that Bax can be envisaged as one of the promising target molecules for restraining photoreceptor degeneration

    A high-resolution RNA expression atlas of Retinitis Pigmentosa genes in the human and mouse retinas

    Get PDF
    PURPOSE. Retinitis pigmentosa (RP) is one of the leading causes of visual handicap in the world population and is characterized by high genetic heterogeneity. The study of the disease mechanisms and the development of efficient therapeutic approaches have mostly relied on the availability of animal models for this condition, so far. Nevertheless, little information is available about the RNA expression profiles of RP genes in the human retina. An expression atlas of 34 known RP genes in human and murine retinas was generated to overcome this lack of information. METHODS. Appropriate templates were retrieved for 34 RP genes that were used to perform RNA in situ hybridization studies on human and murine adult eyes. RESULTS. Most of the genes displayed similar patterns between human and mouse retina. Different expression patterns were observed for the CNGB1, USH2A, and FSCN2 genes, compared with those in previously reported profiles. In addition, different expression profiles were detected for the RPGR, CA4, PAP1, RGR, and RLBP1 genes in human and mouse retinas. CONCLUSIONS. The first gene expression atlas has been generated of RP genes in human and murine retinas. Differences observed in the expression patterns of some genes in humans and mice, will open new perspectives on the function of these genes and their putative roles in disease pathogenesis

    Mutations in splicing factor PRPF3, causing retinal degeneration, form detrimental aggregates in photoreceptor cells.

    Get PDF
    PRPF3 is an element of the splicing machinery ubiquitously expressed, yet mutations in this gene are associated with a tissue-specific phenotype: autosomal dominant retinitis pigmentosa (RP). Here, we studied the subcellular localization of endogenous- and mutant-transfected PRPF3. We found that (i) subcellular distribution of the endogenous wild-type protein co-localizes with small nuclear ribonucleoproteins, partially with a nucleolar marker and accumulates in speckles labeled by SC35; (ii) in human retinas, PRPF3 does not show a distinctive abundance in photoreceptors, the cells affected in RP and (iii) the RP causing mutant PRPF3, differently from the wild-type protein, forms abnormally big aggregates in transfected photoreceptor cells. Aggregation of T494M mutant PRPF3 inside the nucleus triggers apoptosis only in photoreceptor cells. On the basis of the observation that mutant PRPF3 accumulates in the nucleolus and that transcriptional, translational and proteasome inhibition can induce this phenomenon in non-photoreceptor cells, we hypothesize that mutation affects splicing factor recycling. Noteworthy, accumulation of the mutant protein in big aggregates also affects distribution of some other splicing factors. Our data suggest that the mutant protein has a cell-specific dominant effect in rod photoreceptors while appears not to be harmful to epithelial and fibroblast cells
    • …
    corecore