53 research outputs found

    Metallophthalocyanines as Catalysts in Aerobic Oxidation

    Get PDF
    The first remarkable property associated to metallophthalocyanines (MPcs) was their chemical “inertness”, which made and make them very attractive as stable and durable industrial dyes. Nevertheless, their rich redox chemistry was also explored in the last decades, making available a solid and detailed knowledge background for further studies on the suitability of MPcs as redox catalysts. An overlook of MPcs and their catalytic activity with dioxygen as oxidants will be discussed here with a special emphasis on the last decade. The mini-review begins with a short introduction to phthalocyanines, from their structure to their main features, going then through the redox chemistry of metallophthalocyanines and their catalytic activity in aerobic oxidation reactions. The most significant systems described in the literature comprise the oxidation of organosulfur compounds such as thiols and thiophenes, the functionalization of alkyl arenes, alcohols, olefins, among other substrates

    An insight on the role of photosensitizer nanocarriers for Photodynamic Therapy

    Get PDF
    Photodynamic therapy (PDT) is a modality of cancer treatment in which tumor cells are destroyed by reactive oxygen species (ROS) produced by photosensitizers following its activation with visible or near infrared light. The PDT success is dependent on different factors namely on the efficiency of the photosensitizer deliver and targeting ability. In this review a special attention will be given to the role of some drug delivery systems to improve the efficiency of tetrapyrrolic photosensitizers to this type of treatment.publishe

    A ruthenium(II)-trithiacyclononane curcuminate complex: synthesis, characterization, DNA-interaction, and cytotoxic activity

    Get PDF
    The coordination of ruthenium(II) complexes to anionic oxygen-based donors are very rare. This study describes a simple, one-pot method for obtaining [ruthenium(II)(trithiacyclononane)(curcumin)(S-DMSO)]Cl (1) in 37% yield. The structural characterization of complex 1 by elemental analysis, FT-IR, 1-D and 2-D NMR, ESI+-MS as well as UV–vis and fluorescence spectroscopies are presented. The DNA-melting temperature (Tm) assay shows that salmon sperm DNA (smDNA) in the presence of complex 1 has a higher melting temperature, with ΔTm = 7.4 °C, while in the presence of curcumin the melting temperature remains unaltered. The in vitro cytotoxic activities of curcumin and complex 1 were investigated using the tumor human prostate cell line, PC-3, and the healthy cell line, PNT-2. Complex 1 is innocuous toward normal prostate epithelial cells and, whereas curcumin is toxic, with inhibition rates of ca. 35 and 65% at 50 and 80 μM, respectively. On the tumor cell line PC-3, complex 1 did not cause viability changes, whereas curcumin exhibited dose-dependent inhibition, with ca. 73% inhibition at the highest concentration tested, i.e. 80 μM. This study suggests that coordination with the trithiacyclononane ruthenium(II) scaffold stabilizes the photochemical properties of curcumin and strongly changes its biologic activity.publishe

    Photodynamic inactivation of phage Phi6 as SARS-CoV-2 model in wastewater disinfection: effectivity and safety

    Get PDF
    The past 2 years have been marked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This virus is found in the intestinal tract and reaches the wastewater system, and, consequently, the natural receiving water bodies, and inappropriate or/and inefficient WW treatment is a means of contamination. In the present work, we used a SARS-CoV-2 model—the phage Phi6—to evaluate its survival under different environmental conditions (pH, temperature, salinity, solar, and UV-B irradiation). Then, we tested the efficiency of photodynamic inactivation (PDI) as a WW disinfection alternative method, and, additionally, the impact on the cultivable native marine microorganisms of the PDI-treated WW was evaluated.info:eu-repo/semantics/publishedVersio

    Photoinactivation of phage phi6 as a SARS-CoV-2 model in wastewater: evidence of efficacy and safety

    Get PDF
    The last two years have been marked by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. This virus is found in the intestinal tract; it reaches wastewater systems and, consequently, the natural receiving water bodies. As such, inefficiently treated wastewater (WW) can be a means of contamination. The currently used methods for the disinfection of WW can lead to the formation of toxic compounds and can be expensive or inefficient. As such, new and alternative approaches must be considered, namely, photodynamic inactivation (PDI). In this work, the bacteriophage ϕ6 (or, simply, phage ϕ6), which has been used as a suitable model for enveloped RNA viruses, such as coronaviruses (CoVs), was used as a model of SARS-CoV-2. Firstly, to understand the virus’s survival in the environment, phage ϕ6 was subjected to different laboratory-controlled environmental conditions (temperature, pH, salinity, and solar and UV-B irradiation), and its persistence over time was assessed. Second, to assess the efficiency of PDI towards the virus, assays were performed in both phosphate-buffered saline (PBS), a commonly used aqueous matrix, and a secondarily treated WW (a real WW matrix). Third, as WW is generally discharged into the marine environment after treatment, the safety of PDI-treated WW was assessed through the determination of the viability of native marine water microorganisms after their contact with the PDI-treated effluent. Overall, the results showed that, when used as a surrogate for SARS-CoV-2, phage ϕ6 remains viable in different environmental conditions for a considerable period. Moreover, PDI proved to be an efficient approach in the inactivation of the viruses, and the PDI-treated effluent showed no toxicity to native aquatic microorganisms under realistic dilution conditions, thus endorsing PDI as an efficient and safe tertiary WW disinfection method. Although all studies were performed with phage ϕ6, which is considered a suitable model of SARS-CoV-2, further studies using SARS-CoV-2 are necessary; nevertheless, the findings show the potential of PDI for controlling SARS-CoV-2 in WW.info:eu-repo/semantics/publishedVersio

    Photoinactivation of bacterial and fungal planktonic/biofilm forms using the combination of a porphyrinic formulation with potassium iodide

    Get PDF
    Antimicrobial photodynamic therapy (aPDT) is a promising approach against multidrug-resistant microorganisms. In this work, we accessed the photodynamic efficiency of an affordable formulation composed of five cationic porphyrins (FORM) and its combined effect with potassium iodide (KI) on a large spectrum of microorganisms. For this purpose, the aPDT assays were conducted with FORM alone and FORM + KI on planktonic and biofilm forms of Gram(+) (Staphylococcus aureus) and Gram(−) (Escherichia coli) bacteria and of the yeast Candida albicans. The results obtained indicate that FORM, at low concentrations (0.5–5.0 μM), had an efficient photodynamic action on the planktonic forms of E. coli, S. aureus, and C. albicans. Moreover, the combination of FORM with KI improved the photodynamic action of this PS, promoting microbial inactivation with lower PS concentrations and treatment time. The combination of FORM + KI was also extremely efficient in the destruction of bacterial and fungal biofilms. This outstanding effect may be due to the action of longer-lived iodine reactive species produced by the reaction of KI with the ROS generated by FORM during the aPDT treatment.info:eu-repo/semantics/publishedVersio

    Discovery of thiazolo [5,4-c] isoquinoline based compounds as acetylcholinesterase inhibitors through computational target prediction, molecular docking and bioassay

    Get PDF
    We thank Nathalie Reichmann and Leendert Hamoen (University of Amsterdam) for critical reading of the manuscript, Ana Velic (Proteome Center Tübingen) for help with proteome analysis and Mike VanNieuwenhze (Indiana University) for the generous gift of HADA. This study was funded by the European Research Council through grant ERC‐2017‐CoG‐771709 (to MGP), by national funds through FCT– Fundação para a Ciência e a Tecnologia, PTDC/BIA‐MIC/6982/2020 (to HV); PTDC/BIA‐PLA/3432/2012 (to SRF); FCT through MOSTMICRO‐ITQB R&D Unit (UIDB/04612/2020, UIDP/04612/2020) and LS4FUTURE Associated Laboratory (LA/P/0087/2020) and FCT fellowship SFRH/BD/147052/2019 (to BMS); by the Swiss National National Foundation through P300P3_155346 (to AJ); by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska‐Curie grant agreement No 839596 (to SS) and by the European Molecular Biology Organization through award ALTF 673‐2018 (to SS). Figure 6D and Appendix Fig S7 were created with Biorender.com .A computer-aided drug design (CADD) approach was developed for a focused chemical library comprising a series of sixteen thiazolo[5,4-c]isoquinoline derivatives. Little is known about this group of heteroaromatic compounds, both from the point of view of their synthesis and their biological properties. First, our CADD approach included target prediction by Mondrian conformal prediction with the ChEMBL database. The acetylcholinesterase (AChE) was identified as having a high probability of thiazolo[5,4-c]isoquinolines being active against it. Secondly, the molecular docking predictions revealed four promising thiazoloisoquinolines (2, 7, 13 and 14) according to their prominent ligand-protein energy scores and relevant binding affinities with the AChE pocket residues. The subsequent in vitro evaluation of promising hits and related ones revealed a set of novel AChE inhibitors. Therefore, the findings reported herein may provide a new strategy for discovering novel AChE inhibitors.publishersversionpublishe

    A study of wastewater disinfection with photodynamic treatment and its ecotoxicological effects

    Get PDF
    Viruses have higher mutation rates when compared with other microorganisms, particularly RNA viruses [1]. The higher mutation rate promotes the development of resistance to traditional antivirals, establishing a resistance behavior in viruses populations [1]. RNA viruses in wastewater (WW) have already been reported, leading to potential public health risks [2]. Wastewater treated with conventional antimicrobial approaches (tertiary WW treatments) like UV light, chlorine, and ozone can lead to viruses mutations and the formation of toxic by-products harmful to humans and the environment [3]. All this, highlights the inevitability to provide alternative WW disinfection techniques. Antimicrobial Photodynamic treatment (PDt), an approach based on the action of reactive oxygen species (ROS), is being considered a promising alternative to viruses inactivation without the generation of viral mutations or toxic by-products [4,5]. This study evaluated the efficiency of PDt in the inactivation of bacteriophage Phi6 (RNA-viruses model) in real WW. PDt assays were carried out in a buffer solution (PBS, as a controlled medium) and in WW (after secondary treatment) with Methylene Blue (MB) as photosensitizer (PS), and a low energy consuming light source (LED). The disinfection protocol developed with MB resulted in an efficient inactivation of the bacteriophage Phi6, both in PBS and in the real WW. Considering that treated effluents are released into the environment, the acute toxicity of PDttreated WW to the model organism Daphnia magna was also evaluated during a 48h exposure to the PDt-treated WW with MB. In this communication it will be present and discuss the PDt protocol developed to photoinactivate the model RNAvirus bacteriophage Phi6 and the preliminary results of the acute toxicity of PDt-treated WW in Daphnia magna model.info:eu-repo/semantics/publishedVersio

    Wastewater disinfection with photodynamic treatment and evaluation of its ecotoxicological effects

    Get PDF
    Research has demonstrated the presence of viruses in wastewater (WW), which can remain viable for a long period, posing potential health risks. Conventional WW treatment methods involving UV light, chlorine and ozone efficiently reduce microbial concentrations, however, they produce hazardous byproducts and microbial resistance that are detrimental to human health and the ecosystem. Hence, there is a need for novel disinfection techniques. Antimicrobial Photodynamic Inactivation (PDI) emerges as a promising strategy, utilizing photosensitizers (PS), light, and dioxygen to inactivate viruses. This study aims to assess the efficacy of PDI by testing methylene blue (MB) and the cationic porphyrin TMPyP as PSs, along a low energy consuming white light source (LED) at an irradiance of 50 mW/cm2, for the inactivation of bacteriophage Phi6. Phi6 serves as an enveloped RNA-viruses surrogate model in WW. PDI experiments were conducted in a buffer solution (PBS) and real WW matrices (filtered and non-filtered). Considering the environmental release of the treated effluents, this research also evaluated the ecotoxicity of the resulting solution (post-PDI treatment effluent) on the model organism Daphnia magna, following the Organisation for Economic Cooperation and Development (OECD) immobilization technical 202 guideline. Daphnids were exposed to WW containing the tested PS at different concentrations and dilutions (accounting for the dilution factor during WW release into receiving waters) over 48 h. The results indicate that PDI with MB efficiently inactivated the model virus in the different aqueous matrices, achieving reductions superior to 8 log10 PFU/mL, after treatments of 5 min in PBS and of ca. 90 min in WW. Daphnids survival increased when subjected to the PDI-treated WW with MB, considering the dilution factor. Overall, the effectiveness of PDI in eliminating viruses in WW, the fading of the toxic effects on daphnids after MB’ irradiation and the rapid dilution effect upon WW release in the environment highlight the possibility of using MB in WW PDI-disinfection.info:eu-repo/semantics/publishedVersio
    corecore