13 research outputs found

    Donor/Acceptor Heterojunction Organic Solar Cells

    Get PDF
    The operation and the design of organic solar cells with donor/acceptor heterojunction structure and exciton blocking layer is outlined and results of their initial development and assessment are reported. Under halogen lamp illumination with 100 mW/cm2 incident optical power density, the devices exhibits an open circuit voltage VOC = 0.45 V, a short circuit current density JSC between 2 and 2.5 mA/cm2 with a fill factor FF ≈ 50%, an external quantum efficiency (electrons/s over incident photons/s) EQE ≈ 5% and a power conversion efficiency of about 0.5%. Measurements of the photoelectrical characteristics with time are also reported, confirming that non encapsulated organic solar cells have limited stability in ambient atmosphere

    Capacitive actuation and switching of add\u2013drop graphene-silicon micro-ring filters

    Get PDF
    We propose and experimentally demonstrate capacitive actuation of a graphene\u2013silicon micro-ring add/drop filter. The mechanism is based on a silicon\u2013SiO2\u2013graphene capacitor on top of the ring waveguide. We show the capacitive actuation of the add/drop functionality by a voltage-driven change of the graphene optical absorption. The proposed capacitive solution overcomes the need for continuous heating to keep tuned the filter\u2019s in/out resonance and therefore eliminates \u201cin operation\u201d energy consumption

    Photocurrent generation in Graphene Field Effect Transistors (GFETs)

    No full text
    In this work, we focused on the study of Graphene Field Effect Transistors (GFETs) photoelectrical response due to the combination of photovoltaic and photo-thermoelectric effects. The technological steps for the transistors fabrication together with their electro-optic response will be presented. Measurements were performed by using a 405 nm laser diode with AM modulation at 1.33 KHz shined onto the sample under test. GFETs electrical output signals were measured by using a lock-in amplifier synchronized to the same reference frequency of the laser driver. This gave us the possibility to evaluate the optical characteristics as a function of both the incident laser power and the static polarization of the device. We found that the optical response of our devices depends on the static polarization of the gate-source voltage and it shows a linear trend as a function of the incident laser power

    Photoelectrical response of Graphene Field Effect Transistors (GFETs)

    No full text
    In this work, we present Graphene Field Effect Transistors (GFETs) with photoelectrical response due to the photovoltaiceffect. Our final aim is to use a GFET to down convert an optical to a radiofrequency signal. The technological steps used for the devices fabrication as well as the photoelectrical characterization will be reported. Photoelectrical measurements were performed by using a 405 nm laser diode source, whose output beam was pulse amplitude-modulated at 1.33 kHz by means of a laser driver. The electrical signal out of the GFETs (in a common source amplifier configuration) was measured using a lock-in amplifier synchronized to the same reference frequency of the laser driver. This gave us the possibility to evaluate the optical response as a function of both the incident laser power and the DC biasing of the device. In particular, in order to explore the GFETs photovoltaic characteristics, we decided to perform low noise measurements at zero bias (VDS=0) and with VGS ranging between -2V and +2V. We found that the optical response of our device depends on the static polarization of the gate-source voltage and it shows a linear trend as a function of the incident laser power

    Fabrication and analysis of the layout impact in Graphene Field Effect Transistors (GFETs)

    No full text
    In this work we focused on the analysis of Graphene Field Effect Transistor (GFET) microwave parameters dependence on geometries. In particular, a statistical, experimental investigation of the cut-off frequency (ft) dependency on both the gate-drain/source distance (Δ) and the gate length (Lg) was carried out. 24 GFET families on the same chip were fabricated, each one made of 10 identical (same geometry) devices. The analysis of the measured data shows that ft is both Δ and Lg dependent, and that there exists an optimal region in Δ and Lg design space

    Infrared detection in multifunctional graphene-based transistors

    No full text
    In the last years great attention has been paid to graphene-based devices for optoelectronic applications such as photodetection. In this work, we report on Graphene Field Effect Transistors (GFETs) photoelectrical response due to the photo-transistor effect. Photoelectrical measurements were performed using a 1.55 μm erbium fiber laser. Optical measurements as a function of both the incident laser power and the DC bias of the fabricated devices have been carried out and show that photocurrent increases with the power of the IR beam illuminating the sample

    Impact of GFETs geometries on RF performances

    No full text
    Graphene is a relatively new material whose unique properties have attracted significant interest for its use in electronic and photonic applications. In particular, field effect has been proved in graphene samples and the observed high carrier mobility makes graphene an interesting solution for high frequency electronics. In this work, we focused on the analysis of microwave parameters dependence on geometries in Graphene Field Effect Transistors (GFETs). In particular, a statistical, experimental investigation of the cut-off frequency (fT) and of the output impedance (Zout) dependency on both the gate-drain/source distance (Δ) and the gate length (Lg) was carried out. 24 GFET families were fabricated on the same chip, each one made of 10 identical (same geometry) devices. The analysis of the measured data shows that fT and Zout are both Δ and Lg dependent, and that there exists a region in Δ and Lg design space where fT is optimized

    Microwave parameters dependence on Graphene Field Effect Transistors (GFETs) dimensions

    No full text
    Graphene is a relatively new material whose unique properties have attracted significant interest for its use in electronic and photonic applications. In particular, field effect has been proved in graphene samples and this feature, together with the high carrier mobility observed, makes graphene an interesting solution for high frequency electronics. In our work, we performed a statistical analysis in order to evaluate the microwave parameters dependence on Graphene Field Effect Transistors (GFETs) dimensions. In more detail, for the first time, we studied the behavior of the cut-off frequency (ft) and of the output impedance (Zout) at varying both the gate-drain/gate-source distance (Δ) and the gate length (Lg). In order to perform the abovementioned statistical analysis, we fabricated 24 GFETs families on the same chip. Each family is composed of 10 equal devices, with the same Δ and Lg values. After their fabrication, the GFETs were characterized in both DC and RF regimes. DC measurements allowed us to obtain the transconductance curves (Id vs Vgs) and, hence, to evaluate the static transconductance (gm), whose value deeply influences the cut-off frequency. The scattering parameters were then measured, in the region where gm shows its highest value, by using a vector network analyzer. This allowed us to evaluate the short circuit current gain (h21), ft and Zout
    corecore