29 research outputs found

    A Mechanical Hand-Tracking System with Tactile Feedback Designed for Telemanipulation

    Get PDF
    : In this paper, we present a mechanical hand-tracking system with tactile feedback designed for fine manipulation in teleoperation scenarios. Alternative tracking methods based on artificial vision and data gloves have become an asset for virtual reality interaction. Yet, occlusions, lack of precision, and the absence of effective haptic feedback beyond vibrotactile still appear as a limit for teleoperation applications. In this work, we propose a methodology to design a linkage mechanism for hand pose tracking purposes, preserving complete finger mobility. Presentation of the method is followed by design and implementation of a working prototype, and by evaluation of the tracking accuracy using optical markers. Moreover, a teleoperation experiment involving a dexterous robotic arm and hand was proposed to ten participants. It investigated the effectiveness and repeatability of the hand tracking with combined haptic feedback during a proposed pick and place manipulation tasks

    A Method for Modeling and Controlling Complex Tendon Transmissions in Haptic Interfaces

    No full text
    One of the principal guidelines in the design of haptic devices is to provide a suitable mechanical design that can improve control performance and the force-feedback fidelity. Unfortunately these guidelines may conflict with other design objectives (reflected mass, balancing, dexterity) as well as with specifications given by users and applications. For haptic interfaces based on tendon driven actuation it is highly important to achieve an accurate model of friction losses in the transmission system, in order to be able to compensate for them through an active control. In this paper it is reported a method for modeling and control complex tendon transmissions used for driving haptic devices and robots. The presented approach can operate in realtime with very low complexity; it is applicable to all kinds of serial manipulators and provides enough flexibility to allow identification of parameters and modeling of distributed friction phenomena all along the transmission. The approach has been implemented and tested on a 4 DOF exoskeleton system, the PERCRO L-EXOS
    corecore