263 research outputs found

    Symmetry Properties of Nested Canalyzing Functions

    Full text link
    Many researchers have studied symmetry properties of various Boolean functions. A class of Boolean functions, called nested canalyzing functions (NCFs), has been used to model certain biological phenomena. We identify some interesting relationships between NCFs, symmetric Boolean functions and a generalization of symmetric Boolean functions, which we call rr-symmetric functions (where rr is the symmetry level). Using a normalized representation for NCFs, we develop a characterization of when two variables of an NCF are symmetric. Using this characterization, we show that the symmetry level of an NCF ff can be easily computed given a standard representation of ff. We also present an algorithm for testing whether a given rr-symmetric function is an NCF. Further, we show that for any NCF ff with nn variables, the notion of strong asymmetry considered in the literature is equivalent to the property that ff is nn-symmetric. We use this result to derive a closed form expression for the number of nn-variable Boolean functions that are NCFs and strongly asymmetric. We also identify all the Boolean functions that are NCFs and symmetric.Comment: 17 page

    Learning the Topology and Behavior of Discrete Dynamical Systems

    Full text link
    Discrete dynamical systems are commonly used to model the spread of contagions on real-world networks. Under the PAC framework, existing research has studied the problem of learning the behavior of a system, assuming that the underlying network is known. In this work, we focus on a more challenging setting: to learn both the behavior and the underlying topology of a black-box system. We show that, in general, this learning problem is computationally intractable. On the positive side, we present efficient learning methods under the PAC model when the underlying graph of the dynamical system belongs to some classes. Further, we examine a relaxed setting where the topology of an unknown system is partially observed. For this case, we develop an efficient PAC learner to infer the system and establish the sample complexity. Lastly, we present a formal analysis of the expressive power of the hypothesis class of dynamical systems where both the topology and behavior are unknown, using the well-known formalism of the Natarajan dimension. Our results provide a theoretical foundation for learning both the behavior and topology of discrete dynamical systems.Comment: Accepted at AAAI-2

    Networked Anti-Coordination Games Meet Graphical Dynamical Systems: Equilibria and Convergence

    Full text link
    Evolutionary anti-coordination games on networks capture real-world strategic situations such as traffic routing and market competition. In such games, agents maximize their utility by choosing actions that differ from their neighbors' actions. Two important problems concerning evolutionary games are the existence of a pure Nash equilibrium (NE) and the convergence time of the dynamics. In this work, we study these two problems for anti-coordination games under sequential and synchronous update schemes. For each update scheme, we examine two decision modes based on whether an agent considers its own previous action (self essential ) or not (self non-essential ) in choosing its next action. Using a relationship between games and dynamical systems, we show that for both update schemes, finding an NE can be done efficiently under the self non-essential mode but is computationally intractable under the self essential mode. To cope with this hardness, we identify special cases for which an NE can be obtained efficiently. For convergence time, we show that the best-response dynamics converges in a polynomial number of steps in the synchronous scheme for both modes; for the sequential scheme, the convergence time is polynomial only under the self non-essential mode. Through experiments, we empirically examine the convergence time and the equilibria for both synthetic and real-world networks.Comment: Accepted at AAAI-2

    Finding Nontrivial Minimum Fixed Points in Discrete Dynamical Systems

    Full text link
    Networked discrete dynamical systems are often used to model the spread of contagions and decision-making by agents in coordination games. Fixed points of such dynamical systems represent configurations to which the system converges. In the dissemination of undesirable contagions (such as rumors and misinformation), convergence to fixed points with a small number of affected nodes is a desirable goal. Motivated by such considerations, we formulate a novel optimization problem of finding a nontrivial fixed point of the system with the minimum number of affected nodes. We establish that, unless P = NP, there is no polynomial time algorithm for approximating a solution to this problem to within the factor n^1-\epsilon for any constant epsilon > 0. To cope with this computational intractability, we identify several special cases for which the problem can be solved efficiently. Further, we introduce an integer linear program to address the problem for networks of reasonable sizes. For solving the problem on larger networks, we propose a general heuristic framework along with greedy selection methods. Extensive experimental results on real-world networks demonstrate the effectiveness of the proposed heuristics.Comment: Accepted at AAAI-2

    Assigning Agents to Increase Network-Based Neighborhood Diversity

    Full text link
    Motivated by real-world applications such as the allocation of public housing, we examine the problem of assigning a group of agents to vertices (e.g., spatial locations) of a network so that the diversity level is maximized. Specifically, agents are of two types (characterized by features), and we measure diversity by the number of agents who have at least one neighbor of a different type. This problem is known to be NP-hard, and we focus on developing approximation algorithms with provable performance guarantees. We first present a local-improvement algorithm for general graphs that provides an approximation factor of 1/2. For the special case where the sizes of agent subgroups are similar, we present a randomized approach based on semidefinite programming that yields an approximation factor better than 1/2. Further, we show that the problem can be solved efficiently when the underlying graph is treewidth-bounded and obtain a polynomial time approximation scheme (PTAS) for the problem on planar graphs. Lastly, we conduct experiments to evaluate the per-performance of the proposed algorithms on synthetic and real-world networks.Comment: Accepted at AAMAS-2
    • …
    corecore