123 research outputs found

    Specialized Learning in Antlions (Neuroptera: Myrmeleontidae), Pit-Digging Predators, Shortens Vulnerable Larval Stage

    Get PDF
    Unique in the insect world for their extremely sedentary predatory behavior, pit-dwelling larval antlions dig pits, and then sit at the bottom and wait, sometimes for months, for prey to fall inside. This sedentary predation strategy, combined with their seemingly innate ability to detect approaching prey, make antlions unlikely candidates for learning. That is, although scientists have demonstrated that many species of insects possess the capacity to learn, each of these species, which together represent multiple families from every major insect order, utilizes this ability as a means of navigating the environment, using learned cues to guide an active search for food and hosts, or to avoid noxious events. Nonetheless, we demonstrate not only that sedentary antlions can learn, but also, more importantly, that learning provides an important fitness benefit, namely decreasing the time to pupate, a benefit not yet demonstrated in any other species. Compared to a control group in which an environmental cue was presented randomly vis-à-vis daily prey arrival, antlions given the opportunity to associate the cue with prey were able to make more efficient use of prey and pupate significantly sooner, thus shortening their long, highly vulnerable larval stage. Whereas “median survival time,” the point at which half of the animals in each group had pupated, was 46 days for antlions receiving the Learning treatment, that point never was reached in antlions receiving the Random treatment, even by the end of the experiment on Day 70. In addition, we demonstrate a novel manifestation of antlions' learned response to cues predicting prey arrival, behavior that does not match the typical “learning curve” but which is well-adapted to their sedentary predation strategy. Finally, we suggest that what has long appeared to be instinctive predatory behavior is likely to be highly modified and shaped by learning

    DNA methylation and inflammation marker profiles associated with a history of depression

    Get PDF
    Brain and Behaviour Research Foundation (BBF) through a NARSAD Young Investigator Grant; e National Institute for Health Research (NIHR) Exeter Clinical Research Facility

    Justice and Corporate Governance: New Insights from Rawlsian Social Contract and Sen’s Capabilities Approach

    Get PDF
    By considering what we identify as a problem inherent in the ‘nature of the firm’—the risk of abuse of authority—we propound the conception of a social contract theory of the firm which is truly Rawlsian in its inspiration. Hence, we link the social contract theory of the firm (justice at firm’s level) with the general theory of justice (justice at society’s level). Through this path, we enter the debate about whether firms can be part of Rawlsian theory of justice showing that corporate governance principles enter the “basic structure.” Finally, we concur with Sen’s aim to broaden the realm of social justice beyond what he calls the ‘transcendental institutional perfectionism’ of Rawls’ theory. We maintain the contractarian approach to justice but introduce Sen’s capability concept as an element of the constitutional and post-constitutional contract model of institutions with special reference to corporate governance. Accordingly, rights over primary goods and capabilities are (constitutionally) granted by the basic institutions of society, but many capabilities have to be turned into the functionings of many stakeholders through the operation of firms understood as post-constitutional institutional domains. The constitutional contract on the distribution of primary goods and capabilities should then shape the principles of corporate governance so that at post-constitutional level anyone may achieve her/his functionings in the corporate domain by exercising such capabilities. In the absence of such a condition, post-constitutional contracts would distort the process that descends from constitutional rights and capabilities toward social outcomes

    Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10−23/Hz−−−√ was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30  M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914

    Effects of Data Quality Vetoes on a Search for Compact Binary Coalescences in Advanced LIGO's First Observing Run

    Get PDF
    The first observing run of Advanced LIGO spanned 4 months, from September 12, 2015 to January 19, 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 years to less than 1 in 186000 years.Comment: 27 pages, 13 figures, published versio

    A search of the Orion spur for continuous gravitational waves using a "loosely coherent" algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87∘6.87^\circ in diameter and centered on 20h10m54.71s+33∘33â€Č25.29"20^\textrm{h}10^\textrm{m}54.71^\textrm{s}+33^\circ33'25.29", and the other (B) is 7.45∘7.45^\circ in diameter and centered on 8h35m20.61s−46∘49â€Č25.151"8^\textrm{h}35^\textrm{m}20.61^\textrm{s}-46^\circ49'25.151". We explored the frequency range of 50-1500 Hz and frequency derivative from 00 to −5×10−9-5\times 10^{-9} Hz/s. A multi-stage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous followup parameters have winnowed initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169169 Hz we achieve our lowest 95% CL upper limit on worst-case linearly polarized strain amplitude h0h_0 of 6.3×10−256.3\times 10^{-25}, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10−243.4\times 10^{-24} for all polarizations and sky locations.Comment: Fixed minor typo - duplicate name in the author lis

    Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

    Get PDF
    We report results of a wideband search for periodic gravitational waves from isolated neutron stars within the Orion spur towards both the inner and outer regions of our Galaxy. As gravitational waves interact very weakly with matter, the search is unimpeded by dust and concentrations of stars. One search disk (A) is 6.87° in diameter and centered on 20h10m54.71s+33°33â€Č25.29â€Čâ€Č, and the other (B) is 7.45° in diameter and centered on 8h35m20.61s-46°49â€Č25.151â€Čâ€Č. We explored the frequency range of 50-1500 Hz and frequency derivative from 0 to -5×10-9 Hz/s. A multistage, loosely coherent search program allowed probing more deeply than before in these two regions, while increasing coherence length with every stage. Rigorous follow-up parameters have winnowed the initial coincidence set to only 70 candidates, to be examined manually. None of those 70 candidates proved to be consistent with an isolated gravitational-wave emitter, and 95% confidence level upper limits were placed on continuous-wave strain amplitudes. Near 169 Hz we achieve our lowest 95% C.L. upper limit on the worst-case linearly polarized strain amplitude h0 of 6.3×10-25, while at the high end of our frequency range we achieve a worst-case upper limit of 3.4×10-24 for all polarizations and sky locations. © 2016 American Physical Society

    Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors

    Get PDF
    Paper producido por "The LIGO Scientific Collaboration and the Virgo Collaboration". (En el registro se mencionan solo algunos autores de las decenas de personas que participan).In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz–1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of OĂ°10Þfor GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GWemission energy of 10−2M⊙c2, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.http://journals.aps.org/prd/abstract/10.1103/PhysRevD.89.122004publishedVersionFil: Aasi, J. LIGO. California Institute of Technology; Estados Unidos de AmĂ©rica.Fil: DomĂ­nguez, E. Argentinian Gravitational Wave Group; Argentina.Fil: Maglione, C. Argentinian Gravitational Wave Group; Argentina.Fil: Reula, O. Argentinian Gravitational Wave Group; Argentina.Fil: Ortega, W. Argentinian Gravitational Wave Group; Argentina.Fil: Wolovick, N. Argentinian Gravitational Wave Group; Argentina.Fil: Schilman, M. Argentinian Gravitational Wave Group; Argentina.FĂ­sica de PartĂ­culas y Campo

    Searches for continuous gravitational waves from nine young supernova remnants

    Get PDF
    We describe directed searches for continuous gravitational waves in data from the sixth LIGO science data run. The targets were nine young supernova remnants not associated with pulsars; eight of the remnants are associated with non-pulsing suspected neutron stars. One target's parameters are uncertain enough to warrant two searches, for a total of ten. Each search covered a broad band of frequencies and first and second frequency derivatives for a fixed sky direction. The searches coherently integrated data from the two LIGO interferometers over time spans from 5.3-25.3 days using the matched-filtering F-statistic. We found no credible gravitational-wave signals. We set 95% confidence upper limits as strong (low) as 4×10−254\times10^{-25} on intrinsic strain, 2×10−72\times10^{-7} on fiducial ellipticity, and 4×10−54\times10^{-5} on r-mode amplitude. These beat the indirect limits from energy conservation and are within the range of theoretical predictions for neutron-star ellipticities and r-mode amplitudes.Comment: Science summary available at http://www.ligo.org/science/Publication-S6DirectedSNR/index.ph
    • 

    corecore