25,795 research outputs found
Dynamical N-body Equlibrium in Circular Dilaton Gravity
We obtain a new exact equilibrium solution to the N-body problem in a
one-dimensional relativistic self-gravitating system. It corresponds to an
expanding/contracting spacetime of a circle with N bodies at equal proper
separations from one another around the circle. Our methods are
straightforwardly generalizable to other dilatonic theories of gravity, and
provide a new class of solutions to further the study of (relativistic)
one-dimensional self-gravitating systems.Comment: 4 pages, latex, reference added, minor changes in wordin
Statistical Mechanics of Relativistic One-Dimensional Self-Gravitating Systems
We consider the statistical mechanics of a general relativistic
one-dimensional self-gravitating system. The system consists of -particles
coupled to lineal gravity and can be considered as a model of
relativistically interacting sheets of uniform mass. The partition function and
one-particle distitrubion functions are computed to leading order in
where is the speed of light; as results for the
non-relativistic one-dimensional self-gravitating system are recovered. We find
that relativistic effects generally cause both position and momentum
distribution functions to become more sharply peaked, and that the temperature
of a relativistic gas is smaller than its non-relativistic counterpart at the
same fixed energy. We consider the large-N limit of our results and compare
this to the non-relativistic case.Comment: latex, 60 pages, 22 figure
3-Body Dynamics in a (1+1) Dimensional Relativistic Self-Gravitating System
The results of our study of the motion of a three particle, self-gravitating
system in general relativistic lineal gravity is presented for an arbitrary
ratio of the particle masses. We derive a canonical expression for the
Hamiltonian of the system and discuss the numerical solution of the resulting
equations of motion. This solution is compared to the corresponding
non-relativistic and post-Newtonian approximation solutions so that the
dynamics of the fully relativistic system can be interpretted as a correction
to the one-dimensional Newtonian self-gravitating system. We find that the
structure of the phase space of each of these systems yields a large variety of
interesting dynamics that can be divided into three distinct regions: annulus,
pretzel, and chaotic; the first two being regions of quasi-periodicity while
the latter is a region of chaos. By changing the relative masses of the three
particles we find that the relative sizes of these three phase space regions
changes and that this deformation can be interpreted physically in terms of the
gravitational interactions of the particles. Furthermore, we find that many of
the interesting characteristics found in the case where all of the particles
share the same mass also appears in our more general study. We find that there
are additional regions of chaos in the unequal mass system which are not
present in the equal mass case. We compare these results to those found in
similar systems.Comment: latex, 26 pages, 17 figures, high quality figures available upon
request; typos and grammar correcte
Chaos in an Exact Relativistic 3-body Self-Gravitating System
We consider the problem of three body motion for a relativistic
one-dimensional self-gravitating system. After describing the canonical
decomposition of the action, we find an exact expression for the 3-body
Hamiltonian, implicitly determined in terms of the four coordinate and momentum
degrees of freedom in the system. Non-relativistically these degrees of freedom
can be rewritten in terms of a single particle moving in a two-dimensional
hexagonal well. We find the exact relativistic generalization of this
potential, along with its post-Newtonian approximation. We then specialize to
the equal mass case and numerically solve the equations of motion that follow
from the Hamiltonian. Working in hexagonal-well coordinates, we obtaining
orbits in both the hexagonal and 3-body representations of the system, and plot
the Poincare sections as a function of the relativistic energy parameter . We find two broad categories of periodic and quasi-periodic motions that we
refer to as the annulus and pretzel patterns, as well as a set of chaotic
motions that appear in the region of phase-space between these two types.
Despite the high degree of non-linearity in the relativistic system, we find
that the the global structure of its phase space remains qualitatively the same
as its non-relativisitic counterpart for all values of that we could
study. However the relativistic system has a weaker symmetry and so its
Poincare section develops an asymmetric distortion that increases with
increasing . For the post-Newtonian system we find that it experiences a
KAM breakdown for : above which the near integrable regions
degenerate into chaos.Comment: latex, 65 pages, 36 figures, high-resolution figures available upon
reques
Soliton Solutions to the Einstein Equations in Five Dimensions
We present a new class of solutions in odd dimensions to Einstein's equations
containing either a positive or negative cosmological constant. These solutions
resemble the even-dimensional Eguchi-Hanson--(anti)-de Sitter ((A)dS) metrics,
with the added feature of having Lorentzian signatures. They provide an
affirmative answer to the open question as to whether or not there exist
solutions with negative cosmological constant that asymptotically approach
AdS, but have less energy than AdS. We present
evidence that these solutions are the lowest-energy states within their
asymptotic class.Comment: 9 pages, Latex; Final version that appeared in Phys. Rev. Lett; title
changed by journal from original title "Eguchi-Hanson Solitons
Possible evidence of extended objects inside the proton
Recent experimental determinations of the Nachtmann moments of the inelastic
structure function of the proton F2p(x, Q**2), obtained at Jefferson Lab, are
analyzed for values of the squared four-momentum transfer Q**2 ranging from ~
0.1 to ~ 2 (GeV/c)**2. It is shown that such inelastic proton data exhibit a
new type of scaling behavior and that the resulting scaling function can be
interpreted as a constituent form factor consistent with the elastic nucleon
data. These findings suggest that at low momentum transfer the inclusive proton
structure function originates mainly from the elastic coupling with extended
objects inside the proton. We obtain a constituent size of ~ 0.2 - 0.3 fm.Comment: 1 reference adde
New Types of Thermodynamics from -Dimensional Black Holes
For normal thermodynamic systems superadditivity , homogeneity \H and
concavity \C of the entropy hold, whereas for -dimensional black holes
the latter two properties are violated. We show that -dimensional black
holes exhibit qualitatively new types of thermodynamic behaviour, discussed
here for the first time, in which \C always holds, \H is always violated
and may or may not be violated, depending of the magnitude of the black
hole mass. Hence it is now seen that neither superadditivity nor concavity
encapsulate the meaning of the second law in all situations.Comment: WATPHYS-TH93/05, Latex, 10 pgs. 1 figure (available on request), to
appear in Class. Quant. Gra
- …