3 research outputs found
Interplay between geometry and flow distribution in an airway tree
Uniform fluid flow distribution in a symmetric volume can be realized through
a symmetric branched tree. It is shown here, however, that the flow
partitioning can be highly sensitive to deviations from exact symmetry if
inertial effects are present. This is found by direct numerical simulation of
the Navier-Stokes equations in a 3D tree geometry. The flow asymmetry is
quantified and found to depend on the Reynolds number. Moreover, for a given
Reynolds number, we show that the flow distribution depends on the aspect ratio
of the branching elements as well as their angular arrangement. Our results
indicate that physiological variability should be severely restricted in order
to ensure uniform fluid distribution in a tree. This study suggests that any
non-uniformity in the air flow distribution in human lungs should be influenced
by the respiratory conditions, rest or hard exercise