1,165 research outputs found

    Special Issue “Gynaecological Cancers Risk: Breast Cancer, Ovarian Cancer and Endometrial Cancer”

    Get PDF
    Over the last decade there have been significant advances and developments in our understanding of factors affecting women’s cancer risk, our ability to identify individuals at increased risk and risk stratify populations, as well as implement and evaluate strategies for screening and prevention

    Brca testing in high-risk populations

    Get PDF

    Online Provision of BRCA1 and BRCA2 Health Information: A Search Engine Driven Systematic Web-Based Analysis

    Get PDF
    BRCA genetic testing is available for UK Jewish individuals but the provision of information online for BRCA is unknown. We aimed to evaluate online provision of BRCA information by UK organisations (UKO), UK Jewish community organisations (JCO), and genetic testing providers (GTP). Google searches for organisations offering BRCA information were performed using relevant sets of keywords. The first 100 website links were categorised into UKOs/JCOs/GTPs; additional JCOs were supplemented through community experts. Websites were reviewed using customised questionnaires for BRCA information. Information provision was assessed for five domains: accessibility, scope, depth, accuracy, and quality. These domains were combined to provide a composite score (maximum score = 5). Results were screened (n = 6856) and 45 UKOs, 16 JCOs, and 18 GTPs provided BRCA information. Accessibility was high (84%,66/79). Scope was lacking with 35% (28/79) addressing >50% items. Most (82%, 65/79) described BRCA-associated cancers: breast and/or ovarian cancer was mentioned by 78%(62/79), but only 34% (27/79) mentioned ≥1 pancreatic, prostate, melanoma. Few websites provided carrier frequencies in the general (24%,19/79) and Jewish populations (20%,16/79). Only 15% (12/79) had quality information with some/minimal shortcomings. Overall information provision was low-to-moderate: median scores UKO = 2.1 (IQR = 1), JCO = 1.6 (IQR = 0.9), and GTP = 2.3 (IQR = 1) (maximum-score = 5). There is a scarcity of high-quality BRCA information online. These findings have implications for UK Jewish BRCA programmes and those considering BRCA testing

    High Energy X-ray Imaging Telescope: HEXIT

    Get PDF

    A double peaked pulse profile observed in GX 1+4

    Get PDF
    The hard X-ray pulsar GX 1+4 was observed several times in the last few years with a pair of balloon-borne Xenon filled Multi-cell Proportional Counters (XMPC). In a balloon flight made on 22 March 1995, the source was detected in a bright state, the average observed source count rate being 8.0±0.2/s8.0\pm0.2/s per detector. X-ray pulsations with a period of 121.9±0.1121.9\pm0.1 s were detected in the source with a broad double peak pulse feature. When observed in December 1993 with the same instrument, the pulse profile of GX 1+4 showed a single peak. This change in the pulse profile to a double pulse structure in about 15 months indicates either activation of the opposite pole of the neutron star if the magnetic field is asymmetric or possibly a change in the beam pattern, from a pencil beam to a fan beam. Assuming a fan beam configuration, the pulse profile is used to find the inclinations of the magnetic axis and the viewing axis with the spin axis. The derived angles support the GINGA observations of a dip in the pulse profile which was resolved to have a local maximum in one of the observations and was explained with resonance scattering of cyclotron line energy photons by the accretion column (Makishima et al., \markcite{maki1988}, Dotani et al., \markcite{dotani1989}.). Compared to our previous observation of the same source with the same telescope (Rao et al., \markcite{rao1994}) a period change rate of 0.72±0.40s/yr0.72 \pm 0.40 s/yr is obtained which is the lowest rate of change of period for this source since its discovery. Average pulse fraction in the hard X-ray range is low (30%), consistent with its anti correlation with luminosity as reported by us earlier (Rao et al., \markcite{rao1994}) and the observed spectrum is very hard (power law photon index 1.67±0.121.67\pm0.12).Comment: 10 pages, to appear in A&

    Ovarian Cancer Screening: There May Be Light at the End of the Tunnel?

    Get PDF
    This letter comments on the reported results of the United Kingdom Collaborative trial of Ovarian Cancer Screening (UKCTOCS) by Jacobs, Menon et al (2015)
    • …
    corecore