30 research outputs found
Serum biomarkers associated with SARS-CoV-2 severity
Immunity with SARS-CoV-2 infection during the acute phase is not sufficiently well understood to differentiate mild from severe cases and identify prognostic markers. We evaluated the immune response profile using a total of 71 biomarkers in sera from patients with SARS-CoV-2 infection, confirmed by RT-PCR and controls. We correlated biological marker levels with negative control (C) asymptomatic (A), nonhospitalized (mild cases-M), and hospitalized (severe cases-S) groups. Among angiogenesis markers, we identified biomarkers that were more frequently elevated in severe cases when compared to the other groups (C, A, and M). Among cardiovascular diseases, there were biomarkers with differences between the groups, with D-dimer, GDF-15, and sICAM-1 higher in the S group. The levels of the biomarkers Myoglobin and P-Selectin were lower among patients in group M compared to those in groups S and A. Important differences in cytokines and chemokines according to the clinical course were identified. Severe cases presented altered levels when compared to group C. This study helps to characterize biological markers related to angiogenesis, growth factors, heart disease, and cytokine/chemokine production in individuals infected with SARS-CoV-2, offering prognostic signatures and a basis for understanding the biological factors in disease severity
Estratégias de promoção de saúde para crianças em idade pré-escolar do município de Patos-PB
Redescription of Anopheles (Nyssorhynchus) antunesi Galvão & Amaral and description of a new species of the Myzorhynchella Section (Diptera: Culicidae) from Serra da Mantiqueira, Brazil
Percepções e crenças de agentes comunitários de saúde sobre resiliência em famílias monoparentais pobres
Prevalência de má oclusão em crianças de 3 a 6 anos portadoras de hábito de sucção de dedo e/ou chupeta
Cooperation and the relationship between education and healthcare institutions: the nursing pró-saúde project
Diagnosis of the Accelerated Soil Erosion in São Paulo State (Brazil) by the Soil Lifetime Index Methodology
Microbial community engineering for biopolymer production from glycerol
In this work, the potential of using microbial community engineering for production of polyhydroxyalkanoates (PHA) from glycerol was explored. Crude glycerol is a by-product of the biofuel (biodiesel and bioethanol) industry and potentially a good substrate for bioplastic production. A PHA-producing microbial community was enriched based on cultivation in a feast–famine regime as successfully applied before for fatty acids-based biopolymer production. A glycerol-fed sequencing batch reactor operated at a 2-day liquid and biomass residence time and with feast–famine cycles of 24 h was used to enrich a mixed community of PHA producers. In a subsequent fedbatch PHA production step under growth-limiting conditions, the enriched mixed community produced PHA up to a dry weight content of 80 wt.%. The conversion efficiency of substrate to PHA on electron basis was 53%. Since glycerol is entering the metabolic pathways of the cell in the glycolytic pathway, it was anticipated that besides PHA, polyglucose could be formed as storage polymer as well. Indeed, polyglucose was produced in low amounts (~10 wt.%). The results indicated that the feast–famine-based enrichment strategy was comparably successful to obtain a microbial community compared to fatty acids-based enrichment described before.BT/BiotechnologyApplied Science
