163 research outputs found

    Infant's leukemia in Belarus before and after Chernobyl

    Get PDF
    Π’ Π΄ΠΎΠΊΠ»Π°Π΄Π΅ обсуТдаСтся Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡ‚ΡŒ Π»Π΅ΠΉΠΊΠΎΠ·Π°ΠΌΠΈ Π½ΠΎΠ²ΠΎΡ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… БСларуси Π² 1979-2010 Π³. ПослС Π°Π²Π°Ρ€ΠΈΠΈ Π½Π° ЧАЭБ(Π² 1986-1992 Π³Π³.) установлСно ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ заболСваСмости острой Π»Π΅ΠΉΠΊΠ΅ΠΌΠΈΠ΅ΠΉ Π΄Π΅Ρ‚Π΅ΠΉ Π² возрастС 0-1 Π»Π΅Ρ‚. НаиболСС вСроятной ΠΏΡ€ΠΈΡ‡ΠΈΠ½ΠΎΠΉ Π΅Π³ΠΎ явилось Π²Π½ΡƒΡ‚Ρ€ΠΈΡƒΡ‚Ρ€ΠΎΠ±Π½ΠΎΠ΅ ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΡ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Ρ…. Π’ соотвСтствии с Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌΠΈ Π°Π½Π°Π»ΠΈΠ·Π° Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ Ρ€Π°Π΄ΠΈΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ риска (ERR) заболСваСмости Π»Π΅ΠΉΠΊΠΎΠ·Π°ΠΌΠΈ Ρƒ Π½ΠΎΠ²ΠΎΡ€ΠΎΠΆΠ΄Π΅Π½Π½Ρ‹Ρ… БСларуси составило 1208/Sv (95% CI oΡ‚ 19,4 Π΄ΠΎ 2940/Sv)

    ΠšΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ·Π° дрСвСсной биомассы Π² изотСрмичСских условиях

    Get PDF
    The paper discusses the results of a kinetic study of the pyrolysis of woody biomass (ordinary oak wood – Quercus robur) under static conditions at temperatures of 673, 773 and 873 K. In experiments, biomass samples weighing about 1.4 g were kept in a heating furnace for a certain period, after which their residual weight was measured and the degree of decomposition achieved was determined. A total of 7 series of experiments were performed: two series each at temperatures of 673 and 873 K and three series at a temperature of 773 K. The obtained results were analyzed in the framework of a single-stage chemical reaction (one-step global model), leading to a loss of the initial mass. It was established that from the phenomenological point of view, the pyrolysis of woody biomass under experimental conditions corresponds to the sigmoidal reaction model by Avarami–Erofeev with an exponent n ranging from 0.508 to 0.985. The use of the results of the first series of experiments led to an activation energy value of 57.2 kJ/mol and a pre-exponential factor value of 38 s–1. The other series of experiments gave an activation energy value of 64.9 kJ/mol and a preexponential factor value of 130 s–1. It is shown that the use of these values of the activation energy and the preexponential factor leads to agreement of the calculated values of the degree of decomposition of the studied biomass samples with the experimental ones in the range of values of the degree of decomposition from 0 to 1. The data presented in this work contribute to a more complete understanding of the kinetics of pyrolysis of biomass, which is necessary for the development of effective equipment for the thermochemical processing of vegetable raw materials.ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ кинСтичСского исслСдования ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ·Π° дрСвСсной биомассы (дрСвСсина Π΄ΡƒΠ±Π° ΠΎΠ±Ρ‹ΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠ³ΠΎ – Quercus robur) Π² статичСских условиях ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… 673, 773 ΠΈ 873 К. Π’ ΠΎΠΏΡ‹Ρ‚Π°Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ массой порядка 1,4 Π³ Π²Ρ‹Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π»ΠΈΡΡŒ Π² Π½Π°Π³Ρ€Π΅Π²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠ΅Ρ‡ΠΈ Π½Π° протяТСнии Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, послС Ρ‡Π΅Π³ΠΎ ΠΈΠ·ΠΌΠ΅Ρ€ΡΠ»Π°ΡΡŒ ΠΈΡ… остаточная масса ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ достигнутая ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ разлоТСния. ВсСго Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ сСмь сСрий ΠΎΠΏΡ‹Ρ‚ΠΎΠ²: ΠΏΠΎ Π΄Π²Π΅ сСрии ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… 673 ΠΈ 873 К ΠΈ Ρ‚Ρ€ΠΈ сСрии ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ 773 К. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… одностадийной химичСской Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ, приводящСй ΠΊ ΠΏΠΎΡ‚Π΅Ρ€Π΅ исходной массы. УстановлСно, Ρ‡Ρ‚ΠΎ с фСномСнологичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ· дрСвСсной биомассы Π² условиях ΠΎΠΏΡ‹Ρ‚ΠΎΠ² соотвСтствуСт сигмоидальной Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Аврами–ЕрофССва с ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ стСпСни n, ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰ΠΈΠΌΡΡ Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΎΡ‚ 0,508 Π΄ΠΎ 0,985. Анализ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΠ΅Ρ€Π²Ρ‹Ρ… сСрий ΠΎΠΏΡ‹Ρ‚ΠΎΠ² ΠΏΡ€ΠΈΠ²Π΅Π» ΠΊ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ энСргии Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ, Ρ€Π°Π²Π½ΠΎΠΌΡƒ 57,2 ΠΊΠ”ΠΆ/моль, ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΡ€Π΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, Ρ€Π°Π²Π½ΠΎΠΌΡƒ 38 с–1. Π”Ρ€ΡƒΠ³ΠΈΠ΅ сСрии ΠΎΠΏΡ‹Ρ‚ΠΎΠ² Π΄Π°Π»ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ энСргии Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ, Ρ€Π°Π²Π½ΠΎΠ΅ 64,9 ΠΊΠ”ΠΆ/моль, ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π°, Ρ€Π°Π²Π½ΠΎΠ΅ 130 с–1. Показано, Ρ‡Ρ‚ΠΎ использованиС этих Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ энСргии Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΡ€Π΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ„Π°ΠΊΡ‚ΠΎΡ€Π° ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ согласию расчСтных Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ стСпСни разлоТСния ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² биомассы с ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ стСпСни разлоТСния ΠΎΡ‚ 0 Π΄ΠΎ 1. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½Π½Ρ‹Π΅ Π² Ρ€Π°Π±ΠΎΡ‚Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠΌΡƒ пониманию ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ·Π° биомассы, Ρ‡Ρ‚ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ эффСктивного оборудования для тСрмохимичСской ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Ρ€Π°ΡΡ‚ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ

    Measurements of Extended Magnetic Fields in Laser-Solid Interaction

    Full text link
    Magnetic fields generated from a laser-foil interaction are measured with high fidelity using a proton radiography scheme with in situ x-ray fiducials. In contrast to prior findings under similar experimental conditions, this technique reveals the self-generated, Biermann-battery fields extend beyond the edge of the expanding plasma plume to a radius of over 3.5 mm by t=+1.4 ns, a result not captured in state-of-the-art magneto-hydrodynamics simulations. An analysis of two mono-energetic proton populations confirms that proton deflection is dominated by magnetic fields far from the interaction (>2 mm) and electric fields are insignificant. Comparisons to prior work suggest a new physics mechanism for the magnetic field generation and transport in laser-solid interactions.Comment: 9 pages, 8 figure

    Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics

    Get PDF
    We use time-resolved photoluminescence (PL) kinetics and PL intensity measurements to study the decay of photoexcitations in colloidal CdSe/ZnS nanocrystals grafted on SiO 2 βˆ’ Si substrates with a wide range of the SiO 2 spacer layer thicknesses. The salient features of experimental observations are found to be in good agreement with theoretical expectations within the framework of modification of spontaneous decay of electric-dipole excitons by their environment. Analysis of the experimental data reveals that energy transfer (ET) from nanocrystals into Si is a major enabler of substantial variations in decay rates, where we quantitatively distinguish contributions from nonradiative and radiative ET channels. We demonstrate that time-resolved PL kinetics provides a more direct assessment of ET, while PL intensity measurements are also affected by the specifics of the generation and emission processes

    Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma

    Get PDF
    Laser–plasma interaction (LPI) at intensities 1015–1016 W cm2 is dominated by parametric instabilities which can be responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS) facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD) instabilities, driven by the interaction of an infrared laser pulse at an intensity 1:2 1016 W cm2 with a 100 mm scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high value of plasma temperature (4 keV) expected from hydrodynamic simulations make these results interesting for a deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed. Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results, beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of collisionless absorption in the LPI energy balance

    Guided electromagnetic discharge pulses driven by short intense laser pulses:Characterization and modeling

    Get PDF
    Strong electromagnetic pulses (EMPs) are generated from intense laser interactions with solid-density targets and can be guided by the target geometry, specifically through conductive connections to the ground. We present an experimental characterization by time- and spatial-resolved proton deflectometry of guided electromagnetic discharge pulses along wires including a coil, driven by 0.5 ps, 50 J, 1019 W/cm2 laser pulses. Proton-deflectometry allows us to time-resolve first the EMP due to the laser-driven target charging and then the return EMP from the ground through the conductive target stalk. Both EMPs have a typical duration of tens of ps and correspond to currents in the kA-range with electric-field amplitudes of multiple GV/m. The sub-mm coil in the target rod creates lensing effects on probing protons due to both magnetic- and electric-field contributions. This way, protons of the 10 MeV-energy range are focused over cm-scale distances. Experimental results are supported by analytical modeling and high-resolution numerical particle-in-cell simulations, unraveling the likely presence of a surface plasma, in which parameters define the discharge pulse dispersion in the non-linear propagation regime.</p

    Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ тСрмичСского разлоТСния бСлорусских Π΄ΠΎΠ»ΠΎΠΌΠΈΡ‚ΠΎΠ²

    Get PDF
    Results of the experimental study of the kinetics of thermal decomposition of natural Belarusian dolomites are discussed. А kinetic equation of this process in the conditions of the performed experiments is determined. The energy activation and pre-exponential factor of the Arrhenius equation corresponding to the established kinetic equation are determined.ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ тСрмичСского разлоТСния ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½Ρ‹Ρ… Π΄ΠΎΠ»ΠΎΠΌΠΈΡ‚ΠΎΠ² БСларуси. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ кинСтичСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰Π΅Π΅ процСсс тСрмичСского разлоТСния Π² условиях ΠΎΠΏΡ‹Ρ‚ΠΎΠ². ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ энСргия Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ ΠΈ ΠΏΡ€Π΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ аррСниусовской зависимости, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ установлСнному кинСтичСскому ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ

    Π­ΠšΠ‘ΠŸΠ•Π Π˜ΠœΠ•ΠΠ’ΠΠ›Π¬ΠΠžΠ• Π˜Π‘Π‘Π›Π•Π”ΠžΠ’ΠΠΠ˜Π• ΠšΠ˜ΠΠ•Π’Π˜ΠšΠ˜ ΠšΠΠ Π‘ΠžΠΠ˜Π—ΠΠ¦Π˜Π˜ ΠžΠšΠ‘Π˜Π”Π ΠšΠΠ›Π¬Π¦Π˜Π― Π’ Π˜Π—ΠžΠ’Π•Π ΠœΠ˜Π§Π•Π‘ΠšΠ˜Π₯ Π£Π‘Π›ΠžΠ’Π˜Π―Π₯

    Get PDF
    The results of experimental studies of kinetics of the reaction CaO + CO2 = CaБО2 performed at isothermal conditions at temperatures of 773, 873, 973 and 1123 K are being discussed. Pyrolysis gas, containing approximately 14.5% vol. of CO2 was fed during the experiments into the reaction zone, which housed the sample of calcinated dolomite. The extent of the reaction was determined from the weight gain of the sample kept at a constant temperature. Analysis of the data has shown that the kinetics of the CaO carbonation reaction is characterized by typical periods of heterogeneous processes, such as periods of induction, reaction acceleration and deceleration. The rate-determining step of the overall process for small degrees of conversion is a chemical reaction of CaO and CO2 . Activation energy and pre-exponential factor of the Arrhenius equation were estimated for this stage on the basis of the performed study. They are 29.6 kJ / mol and 0.36Β·10–1 min-1 (6.0Β·10–3 s-1 ) respectively.Β ΠžΠ±ΡΡƒΠΆΠ΄Π°ΡŽΡ‚ΡΡ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠΈ Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ БаО + БО2 = БаБО2 , Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½Ρ‹Π΅ Π² изотСрмичСских условиях ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π°Ρ… 773, 873, 973 ΠΈ 1123 К. Π’ ΠΎΠΏΡ‹Ρ‚Π°Ρ… ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ·Π½Ρ‹ΠΉ Π³Π°Π·, содСрТащий ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π½ΠΎ 14,5 мас.% БО2 , подавался Π² Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΡƒΡŽ Π·ΠΎΠ½Ρƒ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ размСщался ΠΎΠ±Ρ€Π°Π·Π΅Ρ† ΠΎΡ‚ΠΎΠΆΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠ»ΠΎΠΌΠΈΡ‚Π°. Π‘Ρ‚Π΅ΠΏΠ΅Π½ΡŒ протСкания Ρ€Π΅Π°ΠΊΡ†ΠΈΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ ΠΏΠΎ приросту массы ΠΎΠ±Ρ€Π°Π·Ρ†Π°, Π²Ρ‹Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΡ€ΠΈ постоянной Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅. Анализ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΠΊΠΈΠ½Π΅Ρ‚ΠΈΠΊΠ° ΠΊΠ°Ρ€Π±ΠΎΠ½ΠΈΠ·Π°Ρ†ΠΈΠΈ БаО характСризуСтся Π½Π°Π»ΠΈΡ‡ΠΈΠ΅ΠΌ Ρ‚ΠΈΠΏΠΈΡ‡Π½Ρ‹Ρ… для Π³Π΅Ρ‚Π΅Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… процСссов ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ΠΎΠ², Ρ‚Π°ΠΊΠΈΡ… ΠΊΠ°ΠΊ индукция, ускорСниС ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΠ΅. Для ΠΌΠ°Π»Ρ‹Ρ… стСпСнСй прСвращСния стадиСй, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰Π΅ΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ суммарного процСсса, являСтся химичСскоС взаимодСйствиС БаО ΠΈ БО2 . Для Π΄Π°Π½Π½ΠΎΠΉ стадии Π½Π° основании Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ исслСдования ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ энСргия Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ (29,6 ΠΊΠ”ΠΆ/моль) ΠΈ ΠΏΡ€Π΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΉ Ρ„Π°ΠΊΡ‚ΠΎΡ€ аррСниусовской зависимости (0,36Β·10–1 ΠΌΠΈΠ½-1 ΠΈΠ»ΠΈ 6,0Β·10–3 с-1).

    Π­ΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΈ расчСтноС исслСдования ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ·Π° биомассы Π² цилиндричСском Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π΅

    Get PDF
    The article features an experimental study of thermally thin biomass samples (beech wood particles 17Γ—8Γ—6 mm) pyrolysis in a laboratory scale batch reactor. The reactor was a cylindrical steel body with internal diameter of 200 mm and height of 500 mm. The temperature of a lateral surface of the cylinder during the experiment was being kept constant (550 Β°C) due to electrical heating. The initial loading of the apparatus was about 4 kg with moisture content of about 14Β % by weight. During the experiment, the temperature values of the material being pyrolyzed were recorded at two points of the radial coordinate, viz. at the wall of the apparatus and on its axis. A one-dimensional numerical model of the nonstationary process of biomass conversion (heat and mass transfer in combination with the Avrami – Erofeev reaction model) has been proposed and verified. The reactor is represented as a set of a countable number of cylindrical layers, considered as cells (representative meso-volumes) with an ideal mixing of the properties inside. The cylindrical surfaces that form cells are considered to be isothermal. The size of the cells is chosen to be sufficiently large in comparison with the individual particles of the layer, which makes it possible to consider the temperature field inside the cell volume as monotonic. The evolution of the temperature distribution over the radius of a cylindrical reactor is determined on the basis of a difference approximation of the process of non-stationary thermal conductivity. The calculated forecasts and experimental data showed a good agreement, which indicates the adequacy of the developed mathematical model of pyrolysis and makes it possible to recommend it for engineering calculations of biomass pyrolysis. This model can also be useful in improving the understanding of the basic physical and chemical processes occurring in the conditions of biomass pyrolysis.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ прСдставлСно ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ·Π° тСрмичСски Ρ‚ΠΎΠ½ΠΊΠΈΡ… частиц биомассы (бСрСзовая Ρ‰Π΅ΠΏΠ° 17Β΄8Β΄6 ΠΌΠΌ) Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΌ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π΅ пСриодичСского дСйствия. Π Π΅Π°ΠΊΡ‚ΠΎΡ€ установки ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ ΡΡ‚Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ†ΠΈΠ»ΠΈΠ½Π΄Ρ€Π° с Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠΌ Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ 200Β ΠΌΠΌ ΠΈ высотой 500Β ΠΌΠΌ. Π’ΠΎ врСмя экспСримСнта Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Π½Π°Ρ€ΡƒΠΆΠ½ΠΎΠΉ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ повСрхности Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Π»Π°ΡΡŒ постоянной (550 Β°C) Π·Π° счСт элСктричСского Π½Π°Π³Ρ€Π΅Π²Π°. Масса Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π³Ρ€ΡƒΠ·ΠΊΠΈ составляла ΠΎΠΊΠΎΠ»ΠΎ 4 ΠΊΠ³ ΠΏΡ€ΠΈ влагосодСрТании ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° порядка 14 % ΠΏΠΎ массС. Π’ процСссС экспСримСнта Ρ„ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Π»ΠΈΡΡŒ значСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Ρ€Π°Π΄ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹: Ρƒ стСнки Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π° ΠΈ Π½Π° Π΅Π³ΠΎ оси. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΈ Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π° одномСрная числСнная модСль нСстационарного процСсса конвСрсии биомассы (тСпломассообмСна, совмСщСнного с Ρ€Π΅Π°ΠΊΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ модСлью Аврами – Π•Ρ€ΠΎΡ„Π΅Π΅Π²Π°). Π Π΅Π°ΠΊΡ‚ΠΎΡ€ прСдставлСн ΠΊΠ°ΠΊ Π½Π°Π±ΠΎΡ€ ΠΈΠ· счСтного числа цилиндричСских слоСв, рассматриваСмых ΠΊΠ°ΠΊ ячСйки (ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ ΠΌΠ΅Π·ΠΎΠΎΠ±ΡŠΠ΅ΠΌΡ‹) с ΠΈΠ΄Π΅Π°Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡˆΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ свойств Π²Π½ΡƒΡ‚Ρ€ΠΈ. ЦилиндричСскиС повСрхности, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΠ΅ ячСйки, ΡΡ‡ΠΈΡ‚Π°ΡŽΡ‚ΡΡ изотСрмичСскими. Π Π°Π·ΠΌΠ΅Ρ€ ячССк Π²Ρ‹Π±Ρ€Π°Π½ достаточно большим ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ частицами слоя, Ρ‡Ρ‚ΠΎ позволяСт ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ Π²Π½ΡƒΡ‚Ρ€ΠΈ объСма ячСйки ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½Ρ‹ΠΌ. Π­Π²ΠΎΠ»ΡŽΡ†ΠΈΡ распрСдСлСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ ΠΏΠΎ радиусу цилиндричСского Ρ€Π΅Π°ΠΊΡ‚ΠΎΡ€Π° опрСдСляСтся Π½Π° основС разностной аппроксимации процСсса нСстационарной тСплопроводности. РасчСтныС ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Ρ‹ ΠΈ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ…ΠΎΡ€ΠΎΡˆΠ΅Π΅ соотвСтствиС, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎΠ± адСкватности Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠΉ матСматичСской ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ позволяСт Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π΅Π΅ для провСдСния ΠΈΠ½ΠΆΠ΅Π½Π΅Ρ€Π½Ρ‹Ρ… расчСтов ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ·Π° биомассы. Данная модСль ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΈ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ углублСния понимания основных физичСских ΠΈ химичСских процСссов, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΡ… Π² условиях ΠΏΠΈΡ€ΠΎΠ»ΠΈΠ·Π° биомасс
    • …
    corecore