163 research outputs found
Infant's leukemia in Belarus before and after Chernobyl
Π Π΄ΠΎΠΊΠ»Π°Π΄Π΅ ΠΎΠ±ΡΡΠΆΠ΄Π°Π΅ΡΡΡ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡΡ Π»Π΅ΠΉΠΊΠΎΠ·Π°ΠΌΠΈ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
ΠΠ΅Π»Π°ΡΡΡΠΈ Π² 1979-2010 Π³. ΠΠΎΡΠ»Π΅ Π°Π²Π°ΡΠΈΠΈ Π½Π° Π§ΠΠΠ‘(Π² 1986-1992 Π³Π³.) ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ ΠΊΡΠ°ΡΠΊΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡΠΈ ΠΎΡΡΡΠΎΠΉ Π»Π΅ΠΉΠΊΠ΅ΠΌΠΈΠ΅ΠΉ Π΄Π΅ΡΠ΅ΠΉ Π² Π²ΠΎΠ·ΡΠ°ΡΡΠ΅ 0-1 Π»Π΅Ρ. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎΠΉ ΠΏΡΠΈΡΠΈΠ½ΠΎΠΉ Π΅Π³ΠΎ ΡΠ²ΠΈΠ»ΠΎΡΡ Π²Π½ΡΡΡΠΈΡΡΡΠΎΠ±Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
. Π ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°ΠΌΠΈ Π°Π½Π°Π»ΠΈΠ·Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΈΠ·Π±ΡΡΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ°Π΄ΠΈΠ°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΡΠΈΡΠΊΠ° (ERR) Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π΅ΠΌΠΎΡΡΠΈ Π»Π΅ΠΉΠΊΠΎΠ·Π°ΠΌΠΈ Ρ Π½ΠΎΠ²ΠΎΡΠΎΠΆΠ΄Π΅Π½Π½ΡΡ
ΠΠ΅Π»Π°ΡΡΡΠΈ ΡΠΎΡΡΠ°Π²ΠΈΠ»ΠΎ 1208/Sv (95% CI oΡ 19,4 Π΄ΠΎ 2940/Sv)
ΠΠΈΠ½Π΅ΡΠΈΠΊΠ° ΠΏΠΈΡΠΎΠ»ΠΈΠ·Π° Π΄ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ Π±ΠΈΠΎΠΌΠ°ΡΡΡ Π² ΠΈΠ·ΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ
The paper discusses the results of a kinetic study of the pyrolysis of woody biomass (ordinary oak wood β Quercus robur) under static conditions at temperatures of 673, 773 and 873 K. In experiments, biomass samples weighing about 1.4 g were kept in a heating furnace for a certain period, after which their residual weight was measured and the degree of decomposition achieved was determined. A total of 7 series of experiments were performed: two series each at temperatures of 673 and 873 K and three series at a temperature of 773 K. The obtained results were analyzed in the framework of a single-stage chemical reaction (one-step global model), leading to a loss of the initial mass. It was established that from the phenomenological point of view, the pyrolysis of woody biomass under experimental conditions corresponds to the sigmoidal reaction model by AvaramiβErofeev with an exponent n ranging from 0.508 to 0.985. The use of the results of the first series of experiments led to an activation energy value of 57.2 kJ/mol and a pre-exponential factor value of 38 sβ1. The other series of experiments gave an activation energy value of 64.9 kJ/mol and a preexponential factor value of 130 sβ1. It is shown that the use of these values of the activation energy and the preexponential factor leads to agreement of the calculated values of the degree of decomposition of the studied biomass samples with the experimental ones in the range of values of the degree of decomposition from 0 to 1. The data presented in this work contribute to a more complete understanding of the kinetics of pyrolysis of biomass, which is necessary for the development of effective equipment for the thermochemical processing of vegetable raw materials.ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΈΡΠΎΠ»ΠΈΠ·Π° Π΄ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ Π±ΠΈΠΎΠΌΠ°ΡΡΡ (Π΄ΡΠ΅Π²Π΅ΡΠΈΠ½Π° Π΄ΡΠ±Π° ΠΎΠ±ΡΠΊΠ½ΠΎΠ²Π΅Π½Π½ΠΎΠ³ΠΎ β Quercus robur) Π² ΡΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
673, 773 ΠΈ 873 Π. Π ΠΎΠΏΡΡΠ°Ρ
ΠΎΠ±ΡΠ°Π·ΡΡ ΠΌΠ°ΡΡΠΎΠΉ ΠΏΠΎΡΡΠ΄ΠΊΠ° 1,4 Π³ Π²ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π»ΠΈΡΡ Π² Π½Π°Π³ΡΠ΅Π²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠΈ Π½Π° ΠΏΡΠΎΡΡΠΆΠ΅Π½ΠΈΠΈ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ° Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ, ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΈΠ·ΠΌΠ΅ΡΡΠ»Π°ΡΡ ΠΈΡ
ΠΎΡΡΠ°ΡΠΎΡΠ½Π°Ρ ΠΌΠ°ΡΡΠ° ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»Π°ΡΡ Π΄ΠΎΡΡΠΈΠ³Π½ΡΡΠ°Ρ ΡΡΠ΅ΠΏΠ΅Π½Ρ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΡΠ΅Π³ΠΎ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ ΡΠ΅ΠΌΡ ΡΠ΅ΡΠΈΠΉ ΠΎΠΏΡΡΠΎΠ²: ΠΏΠΎ Π΄Π²Π΅ ΡΠ΅ΡΠΈΠΈ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
673 ΠΈ 873 Π ΠΈ ΡΡΠΈ ΡΠ΅ΡΠΈΠΈ ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅ 773 Π. ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ
ΠΎΠ΄Π½ΠΎΡΡΠ°Π΄ΠΈΠΉΠ½ΠΎΠΉ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΈ, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠ΅ΠΉ ΠΊ ΠΏΠΎΡΠ΅ΡΠ΅ ΠΈΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ°ΡΡΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Ρ ΡΠ΅Π½ΠΎΠΌΠ΅Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ ΠΏΠΈΡΠΎΠ»ΠΈΠ· Π΄ΡΠ΅Π²Π΅ΡΠ½ΠΎΠΉ Π±ΠΈΠΎΠΌΠ°ΡΡΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΎΠΏΡΡΠΎΠ² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΈΠ³ΠΌΠΎΠΈΠ΄Π°Π»ΡΠ½ΠΎΠΉ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΠ²ΡΠ°ΠΌΠΈβΠΡΠΎΡΠ΅Π΅Π²Π° Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΌ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ n, ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΠΈΠΌΡΡ Π² ΠΏΡΠ΅Π΄Π΅Π»Π°Ρ
ΠΎΡ 0,508 Π΄ΠΎ 0,985. ΠΠ½Π°Π»ΠΈΠ· ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΏΠ΅ΡΠ²ΡΡ
ΡΠ΅ΡΠΈΠΉ ΠΎΠΏΡΡΠΎΠ² ΠΏΡΠΈΠ²Π΅Π» ΠΊ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ, ΡΠ°Π²Π½ΠΎΠΌΡ 57,2 ΠΊΠΠΆ/ΠΌΠΎΠ»Ρ, ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΡΠ΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ°, ΡΠ°Π²Π½ΠΎΠΌΡ 38 Ρβ1. ΠΡΡΠ³ΠΈΠ΅ ΡΠ΅ΡΠΈΠΈ ΠΎΠΏΡΡΠΎΠ² Π΄Π°Π»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ, ΡΠ°Π²Π½ΠΎΠ΅ 64,9 ΠΊΠΠΆ/ΠΌΠΎΠ»Ρ, ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ°, ΡΠ°Π²Π½ΠΎΠ΅ 130 Ρβ1. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠΈΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΠΈ ΠΏΡΠ΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠΎΡΠ° ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΎΠ³Π»Π°ΡΠΈΡ ΡΠ°ΡΡΠ΅ΡΠ½ΡΡ
Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² Π±ΠΈΠΎΠΌΠ°ΡΡΡ Ρ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡ 0 Π΄ΠΎ 1. ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½ΡΠ΅ Π² ΡΠ°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΡΡ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ»Π½ΠΎΠΌΡ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΠΏΠΈΡΠΎΠ»ΠΈΠ·Π° Π±ΠΈΠΎΠΌΠ°ΡΡΡ, ΡΡΠΎ Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ Π΄Π»Ρ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡΡΠ΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΡΠ΅ΡΠΌΠΎΡ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ°ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΡΡΡ
Measurements of Extended Magnetic Fields in Laser-Solid Interaction
Magnetic fields generated from a laser-foil interaction are measured with
high fidelity using a proton radiography scheme with in situ x-ray fiducials.
In contrast to prior findings under similar experimental conditions, this
technique reveals the self-generated, Biermann-battery fields extend beyond the
edge of the expanding plasma plume to a radius of over 3.5 mm by t=+1.4 ns, a
result not captured in state-of-the-art magneto-hydrodynamics simulations. An
analysis of two mono-energetic proton populations confirms that proton
deflection is dominated by magnetic fields far from the interaction (>2 mm) and
electric fields are insignificant. Comparisons to prior work suggest a new
physics mechanism for the magnetic field generation and transport in
laser-solid interactions.Comment: 9 pages, 8 figure
Energy transfer from colloidal nanocrystals into Si substrates studied via photoluminescence photon counts and decay kinetics
We use time-resolved photoluminescence (PL) kinetics and PL intensity measurements to study the decay of photoexcitations in colloidal CdSe/ZnS nanocrystals grafted on SiO 2 β Si substrates with a wide range of the SiO 2 spacer layer thicknesses. The salient features of experimental observations are found to be in good agreement with theoretical expectations within the framework of modification of spontaneous decay of electric-dipole excitons by their environment. Analysis of the experimental data reveals that energy transfer (ET) from nanocrystals into Si is a major enabler of substantial variations in decay rates, where we quantitatively distinguish contributions from nonradiative and radiative ET channels. We demonstrate that time-resolved PL kinetics provides a more direct assessment of ET, while PL intensity measurements are also affected by the specifics of the generation and emission processes
Time evolution of stimulated Raman scattering and two-plasmon decay at laser intensities relevant for shock ignition in a hot plasma
Laserβplasma interaction (LPI) at intensities 1015β1016 W cm2 is dominated by parametric instabilities which can be
responsible for a significant amount of non-collisional absorption and generate large fluxes of high-energy nonthermal
electrons. Such a regime is of paramount importance for inertial confinement fusion (ICF) and in particular for the
shock ignition scheme. In this paper we report on an experiment carried out at the Prague Asterix Laser System (PALS)
facility to investigate the extent and time history of stimulated Raman scattering (SRS) and two-plasmon decay (TPD)
instabilities, driven by the interaction of an infrared laser pulse at an intensity 1:2 1016 W cm2 with a 100 mm
scalelength plasma produced from irradiation of a flat plastic target. The laser pulse duration (300 ps) and the high
value of plasma temperature (4 keV) expected from hydrodynamic simulations make these results interesting for a
deeper understanding of LPI in shock ignition conditions. Experimental results show that absolute TPD/SRS, driven at
a quarter of the critical density, and convective SRS, driven at lower plasma densities, are well separated in time, with
absolute instabilities driven at early times of interaction and convective backward SRS emerging at the laser peak and
persisting all over the tail of the pulse. Side-scattering SRS, driven at low plasma densities, is also clearly observed.
Experimental results are compared to fully kinetic large-scale, two-dimensional simulations. Particle-in-cell results,
beyond reproducing the framework delineated by the experimental measurements, reveal the importance of filamentation
instability in ruling the onset of SRS and stimulated Brillouin scattering instabilities and confirm the crucial role of
collisionless absorption in the LPI energy balance
Guided electromagnetic discharge pulses driven by short intense laser pulses:Characterization and modeling
Strong electromagnetic pulses (EMPs) are generated from intense laser interactions with solid-density targets and can be guided by the target geometry, specifically through conductive connections to the ground. We present an experimental characterization by time- and spatial-resolved proton deflectometry of guided electromagnetic discharge pulses along wires including a coil, driven by 0.5 ps, 50 J, 1019 W/cm2 laser pulses. Proton-deflectometry allows us to time-resolve first the EMP due to the laser-driven target charging and then the return EMP from the ground through the conductive target stalk. Both EMPs have a typical duration of tens of ps and correspond to currents in the kA-range with electric-field amplitudes of multiple GV/m. The sub-mm coil in the target rod creates lensing effects on probing protons due to both magnetic- and electric-field contributions. This way, protons of the 10 MeV-energy range are focused over cm-scale distances. Experimental results are supported by analytical modeling and high-resolution numerical particle-in-cell simulations, unraveling the likely presence of a surface plasma, in which parameters define the discharge pulse dispersion in the non-linear propagation regime.</p
ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π±Π΅Π»ΠΎΡΡΡΡΠΊΠΈΡ Π΄ΠΎΠ»ΠΎΠΌΠΈΡΠΎΠ²
Results of the experimental study of the kinetics of thermal decomposition of natural Belarusian dolomites are discussed. Π kinetic equation of this process in the conditions of the performed experiments is determined. The energy activation and pre-exponential factor of the Arrhenius equation corresponding to the established kinetic equation are determined.ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΡΠΎΠ΄Π½ΡΡ
Π΄ΠΎΠ»ΠΎΠΌΠΈΡΠΎΠ² ΠΠ΅Π»Π°ΡΡΡΠΈ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΎ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅Π΅ ΠΏΡΠΎΡΠ΅ΡΡ ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΎΠΏΡΡΠΎΠ². ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΠΈ ΠΏΡΠ΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠ°ΠΊΡΠΎΡ Π°ΡΡΠ΅Π½ΠΈΡΡΠΎΠ²ΡΠΊΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ, ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π½ΠΎΠΌΡ ΠΊΠΈΠ½Π΅ΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
ΠΠΠ‘ΠΠΠ ΠΠΠΠΠ’ΠΠΠ¬ΠΠΠ ΠΠ‘Π‘ΠΠΠΠΠΠΠΠΠ ΠΠΠΠΠ’ΠΠΠ ΠΠΠ ΠΠΠΠΠΠΠ¦ΠΠ ΠΠΠ‘ΠΠΠ ΠΠΠΠ¬Π¦ΠΠ― Π ΠΠΠΠ’ΠΠ ΠΠΠ§ΠΠ‘ΠΠΠ₯ Π£Π‘ΠΠΠΠΠ―Π₯
The results of experimental studies of kinetics of the reaction CaO + CO2 = CaΠ‘Π2 performed at isothermal conditions at temperatures of 773, 873, 973 and 1123 K are being discussed. Pyrolysis gas, containing approximately 14.5% vol. of CO2 was fed during the experiments into the reaction zone, which housed the sample of calcinated dolomite. The extent of the reaction was determined from the weight gain of the sample kept at a constant temperature. Analysis of the data has shown that the kinetics of the CaO carbonation reaction is characterized by typical periods of heterogeneous processes, such as periods of induction, reaction acceleration and deceleration. The rate-determining step of the overall process for small degrees of conversion is a chemical reaction of CaO and CO2 . Activation energy and pre-exponential factor of the Arrhenius equation were estimated for this stage on the basis of the performed study. They are 29.6 kJ / mol and 0.36Β·10β1 min-1 (6.0Β·10β3 s-1 ) respectively.Β ΠΠ±ΡΡΠΆΠ΄Π°ΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠΈ ΡΠ΅Π°ΠΊΡΠΈΠΈ Π‘Π°Π + Π‘Π2 = Π‘Π°Π‘Π2 , Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΡΠ΅ Π² ΠΈΠ·ΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΡΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°Ρ
773, 873, 973 ΠΈ 1123 Π. Π ΠΎΠΏΡΡΠ°Ρ
ΠΏΠΈΡΠΎΠ»ΠΈΠ·Π½ΡΠΉ Π³Π°Π·, ΡΠΎΠ΄Π΅ΡΠΆΠ°ΡΠΈΠΉ ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ 14,5 ΠΌΠ°Ρ.% Π‘Π2 , ΠΏΠΎΠ΄Π°Π²Π°Π»ΡΡ Π² ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΡΡ Π·ΠΎΠ½Ρ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΠ°Π·ΠΌΠ΅ΡΠ°Π»ΡΡ ΠΎΠ±ΡΠ°Π·Π΅Ρ ΠΎΡΠΎΠΆΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠ»ΠΎΠΌΠΈΡΠ°. Π‘ΡΠ΅ΠΏΠ΅Π½Ρ ΠΏΡΠΎΡΠ΅ΠΊΠ°Π½ΠΈΡ ΡΠ΅Π°ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»Π°ΡΡ ΠΏΠΎ ΠΏΡΠΈΡΠΎΡΡΡ ΠΌΠ°ΡΡΡ ΠΎΠ±ΡΠ°Π·ΡΠ°, Π²ΡΠ΄Π΅ΡΠΆΠΈΠ²Π°Π΅ΠΌΠΎΠ³ΠΎ ΠΏΡΠΈ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ΅. ΠΠ½Π°Π»ΠΈΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΠΎΠΊΠ°Π·Π°Π», ΡΡΠΎ ΠΊΠΈΠ½Π΅ΡΠΈΠΊΠ° ΠΊΠ°ΡΠ±ΠΎΠ½ΠΈΠ·Π°ΡΠΈΠΈ Π‘Π°Π Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡ Π½Π°Π»ΠΈΡΠΈΠ΅ΠΌ ΡΠΈΠΏΠΈΡΠ½ΡΡ
Π΄Π»Ρ Π³Π΅ΡΠ΅ΡΠΎΠ³Π΅Π½Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ², ΡΠ°ΠΊΠΈΡ
ΠΊΠ°ΠΊ ΠΈΠ½Π΄ΡΠΊΡΠΈΡ, ΡΡΠΊΠΎΡΠ΅Π½ΠΈΠ΅ ΠΈ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΠ΅. ΠΠ»Ρ ΠΌΠ°Π»ΡΡ
ΡΡΠ΅ΠΏΠ΅Π½Π΅ΠΉ ΠΏΡΠ΅Π²ΡΠ°ΡΠ΅Π½ΠΈΡ ΡΡΠ°Π΄ΠΈΠ΅ΠΉ, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡΠ΅ΠΉ ΡΠΊΠΎΡΠΎΡΡΡ ΡΡΠΌΠΌΠ°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ°, ΡΠ²Π»ΡΠ΅ΡΡΡ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π‘Π°Π ΠΈ Π‘Π2 . ΠΠ»Ρ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°Π΄ΠΈΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ ΡΠ½Π΅ΡΠ³ΠΈΡ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ (29,6 ΠΊΠΠΆ/ΠΌΠΎΠ»Ρ) ΠΈ ΠΏΡΠ΅Π΄ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠΉ ΡΠ°ΠΊΡΠΎΡ Π°ΡΡΠ΅Π½ΠΈΡΡΠΎΠ²ΡΠΊΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ (0,36Β·10β1 ΠΌΠΈΠ½-1 ΠΈΠ»ΠΈ 6,0Β·10β3 Ρ-1).
ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈ ΡΠ°ΡΡΠ΅ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΈΡΠΎΠ»ΠΈΠ·Π° Π±ΠΈΠΎΠΌΠ°ΡΡΡ Π² ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ΅Π°ΠΊΡΠΎΡΠ΅
The article features an experimental study of thermally thin biomass samples (beech wood particles 17Γ8Γ6 mm) pyrolysis in a laboratory scale batch reactor. The reactor was a cylindrical steel body with internal diameter of 200 mm and height of 500 mm. The temperature of a lateral surface of the cylinder during the experiment was being kept constant (550 Β°C) due to electrical heating. The initial loading of the apparatus was about 4 kg with moisture content of about 14Β % by weight. During the experiment, the temperature values of the material being pyrolyzed were recorded at two points of the radial coordinate, viz. at the wall of the apparatus and on its axis. A one-dimensional numerical model of the nonstationary process of biomass conversion (heat and mass transfer in combination with the Avrami β Erofeev reaction model) has been proposed and verified. The reactor is represented as a set of a countable number of cylindrical layers, considered as cells (representative meso-volumes) with an ideal mixing of the properties inside. The cylindrical surfaces that form cells are considered to be isothermal. The size of the cells is chosen to be sufficiently large in comparison with the individual particles of the layer, which makes it possible to consider the temperature field inside the cell volume as monotonic. The evolution of the temperature distribution over the radius of a cylindrical reactor is determined on the basis of a difference approximation of the process of non-stationary thermal conductivity. The calculated forecasts and experimental data showed a good agreement, which indicates the adequacy of the developed mathematical model of pyrolysis and makes it possible to recommend it for engineering calculations of biomass pyrolysis. This model can also be useful in improving the understanding of the basic physical and chemical processes occurring in the conditions of biomass pyrolysis.Π ΡΡΠ°ΡΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠΈΡΠΎΠ»ΠΈΠ·Π° ΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΈ ΡΠΎΠ½ΠΊΠΈΡ
ΡΠ°ΡΡΠΈΡ Π±ΠΈΠΎΠΌΠ°ΡΡΡ (Π±Π΅ΡΠ΅Π·ΠΎΠ²Π°Ρ ΡΠ΅ΠΏΠ° 17Β΄8Β΄6 ΠΌΠΌ) Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΎΠΌ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. Π Π΅Π°ΠΊΡΠΎΡ ΡΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄ ΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠ° Ρ Π²Π½ΡΡΡΠ΅Π½Π½ΠΈΠΌ Π΄ΠΈΠ°ΠΌΠ΅ΡΡΠΎΠΌ 200Β ΠΌΠΌ ΠΈ Π²ΡΡΠΎΡΠΎΠΉ 500Β ΠΌΠΌ. ΠΠΎ Π²ΡΠ΅ΠΌΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° Π½Π°ΡΡΠΆΠ½ΠΎΠΉ Π±ΠΎΠΊΠΎΠ²ΠΎΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΈΠ²Π°Π»Π°ΡΡ ΠΏΠΎΡΡΠΎΡΠ½Π½ΠΎΠΉ (550 Β°C) Π·Π° ΡΡΠ΅Ρ ΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π½Π°Π³ΡΠ΅Π²Π°. ΠΠ°ΡΡΠ° Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π³ΡΡΠ·ΠΊΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ»Π° ΠΎΠΊΠΎΠ»ΠΎ 4 ΠΊΠ³ ΠΏΡΠΈ Π²Π»Π°Π³ΠΎΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΏΠΎΡΡΠ΄ΠΊΠ° 14 % ΠΏΠΎ ΠΌΠ°ΡΡΠ΅. Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ° ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° Π² Π΄Π²ΡΡ
ΡΠΎΡΠΊΠ°Ρ
ΡΠ°Π΄ΠΈΠ°Π»ΡΠ½ΠΎΠΉ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ: Ρ ΡΡΠ΅Π½ΠΊΠΈ Π°ΠΏΠΏΠ°ΡΠ°ΡΠ° ΠΈ Π½Π° Π΅Π³ΠΎ ΠΎΡΠΈ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΈ Π²Π΅ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π° ΠΎΠ΄Π½ΠΎΠΌΠ΅ΡΠ½Π°Ρ ΡΠΈΡΠ»Π΅Π½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π½Π΅ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΊΠΎΠ½Π²Π΅ΡΡΠΈΠΈ Π±ΠΈΠΎΠΌΠ°ΡΡΡ (ΡΠ΅ΠΏΠ»ΠΎΠΌΠ°ΡΡΠΎΠΎΠ±ΠΌΠ΅Π½Π°, ΡΠΎΠ²ΠΌΠ΅ΡΠ΅Π½Π½ΠΎΠ³ΠΎ Ρ ΡΠ΅Π°ΠΊΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΡΡ ΠΠ²ΡΠ°ΠΌΠΈΒ β ΠΡΠΎΡΠ΅Π΅Π²Π°). Π Π΅Π°ΠΊΡΠΎΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ ΠΊΠ°ΠΊ Π½Π°Π±ΠΎΡ ΠΈΠ· ΡΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»ΠΎΠ΅Π², ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ
ΠΊΠ°ΠΊ ΡΡΠ΅ΠΉΠΊΠΈ (ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΌΠ΅Π·ΠΎΠΎΠ±ΡΠ΅ΠΌΡ) Ρ ΠΈΠ΄Π΅Π°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠΈΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ²ΠΎΠΉΡΡΠ² Π²Π½ΡΡΡΠΈ. Π¦ΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ, ΠΎΠ±ΡΠ°Π·ΡΡΡΠΈΠ΅ ΡΡΠ΅ΠΉΠΊΠΈ, ΡΡΠΈΡΠ°ΡΡΡΡ ΠΈΠ·ΠΎΡΠ΅ΡΠΌΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ. Π Π°Π·ΠΌΠ΅Ρ ΡΡΠ΅Π΅ΠΊ Π²ΡΠ±ΡΠ°Π½ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΈΠΌ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌΠΈ ΡΠ°ΡΡΠΈΡΠ°ΠΌΠΈ ΡΠ»ΠΎΡ, ΡΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΡΠΈΡΠ°ΡΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»Π΅ Π²Π½ΡΡΡΠΈ ΠΎΠ±ΡΠ΅ΠΌΠ° ΡΡΠ΅ΠΉΠΊΠΈ ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΡΠΌ. ΠΠ²ΠΎΠ»ΡΡΠΈΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΏΠΎ ΡΠ°Π΄ΠΈΡΡΡ ΡΠΈΠ»ΠΈΠ½Π΄ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π°ΠΊΡΠΎΡΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π·Π½ΠΎΡΡΠ½ΠΎΠΉ Π°ΠΏΠΏΡΠΎΠΊΡΠΈΠΌΠ°ΡΠΈΠΈ ΠΏΡΠΎΡΠ΅ΡΡΠ° Π½Π΅ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠΉ ΡΠ΅ΠΏΠ»ΠΎΠΏΡΠΎΠ²ΠΎΠ΄Π½ΠΎΡΡΠΈ. Π Π°ΡΡΠ΅ΡΠ½ΡΠ΅ ΠΏΡΠΎΠ³Π½ΠΎΠ·Ρ ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Ρ
ΠΎΡΠΎΡΠ΅Π΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠ΅, ΡΡΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΠ΅Ρ ΠΎΠ± Π°Π΄Π΅ΠΊΠ²Π°ΡΠ½ΠΎΡΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°ΡΡ Π΅Π΅ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΈΠ½ΠΆΠ΅Π½Π΅ΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΠΏΠΈΡΠΎΠ»ΠΈΠ·Π° Π±ΠΈΠΎΠΌΠ°ΡΡΡ. ΠΠ°Π½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠΊΠ°Π·Π°ΡΡΡΡ ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΈ Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΡΠ³Π»ΡΠ±Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ
ΡΠΈΠ·ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΈ Ρ
ΠΈΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ², ΠΏΡΠΎΡΠ΅ΠΊΠ°ΡΡΠΈΡ
Π² ΡΡΠ»ΠΎΠ²ΠΈΡΡ
ΠΏΠΈΡΠΎΠ»ΠΈΠ·Π° Π±ΠΈΠΎΠΌΠ°ΡΡ
- β¦