3 research outputs found
Recommended from our members
Characterization of the Precision Laser Beam Welding Process for the MC4368A Neutron Generator
The design of experiments (DOEx) approach was used to characterize the Precision Laser Beam Welding Process with respect to four processing factors: Angle of Attack, Volts, Pulse Length, and Focus. The experiment was performed with Lap Joints, Nickel-Wire Joints, and Kovar-Wire Joints. The laser welding process and these types of welds are used in the manufacture of MC4368A Neutron Generators. For each weld type an individual optimal condition and operating window was identified. The widths of the operating windows that were identified by experimentation indicate that the laser weld process is very robust. This is highly desirable because it means that the quality of the resulting welds is not sensitive to the exact values of the processing factors within the operating windows. Statistical process control techniques can be used to ensure that the processing factors stay well within the operating window
Recommended from our members
Braze Process Optimization Involving Conventional Metal/Ceramic Brazing with 50Au-50Cu Alloy
Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. Experience with brazing of hermetic vacuum components has identified the following parameters as influencing the outcome of hydrogen furnace brazed Kovar{trademark} to metallized alumina braze joints: (a) Mo-Mn metallization thickness, sinter fire temperature and porosity (b) Nil plate purity, thickness, and sinter firing conditions (c) peak process temperature, time above liquidus and (d) braze alloy washer thickness. ASTM F19 tensile buttons are being used to investigate the above parameters. The F19 geometry permits determination of both joint hermeticity and tensile strength. This presentation will focus on important lessons learned from the tensile button study: (A) the position of the Kovar{trademark} interlayer can influence the joint tensile strength achieved--namely, off-center interlayers can lead to residual stress development in the ceramic and degrade tensile strength values. Finite element analysis has been used to demonstrate the expected magnitude in strength degradation as a function of misalignment. (B) Time above liquidus (TAL) and peak temperature can influence the strength and alloying level of the resulting braze joint. Excessive TAL or peak temperatures can lead to overbraze conditions where all of the Ni plate is dissolved. (C) Metallize sinter fire processes can influence the morphology and strength obtained from the braze joints
Recommended from our members
Analytical investigation of AlCl[3]/SO[2]Cl[2] catholyte materials for secondary fuze reserve batteries.
Exploration of the fundamental chemical behavior of the AlCl{sub 3}/SO{sub 2}Cl{sub 2} catholyte system for the ARDEC Self-Destruct Fuze Reserve Battery Project under accelerated aging conditions was completed using a variety of analytical tools. Four different molecular species were identified in this solution, three of which are major. The relative concentrations of the molecular species formed were found to depend on aging time, initial concentrations, and storage temperature, with each variable affecting the kinetics and thermodynamics of this complex reaction system. We also evaluated the effect of water on the system, and determined that it does not play a role in dictating the observed molecular species present in solution. The first Al-containing species formed was identified as the dimer [Al({mu}-Cl)Cl{sub 2}]{sub 2}, and was found to be in equilibrium with the monomer, AlCl{sub 3}. The second species formed in the reaction scheme was identified by single crystal X-ray diffraction studies as [Cl{sub 2}Al({mu}-O{sub 2}SCl)]{sub 2} (I), a scrambled AlCl{sub 3}{center_dot}SO{sub 2} adduct. The SO{sub 2}(g) present, as well as CL{sub 2}(g), was formed through decomposition of SO{sub 2}CL{sub 2}. The SO{sub 2}(g) generated was readily consumed by AlCl{sub 3} to form the adduct 1 which was experimentally verified when 1 was also isolated from the reaction of SO{sub 2}(g) and AlCl {sub 3}. The third species found was tentatively identified as a compound having the general formula {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. This was based on {sup 27}Al NMR data that revealed a species with tetrahedrally coordinated Al metal centers with increased oxygen coordination and the fact that the precipitate, or gel, that forms over time was shown by Raman spectroscopic studies to possess a component that is consistent with SOCl{sub 2}. The precursor to the precipitate should have similar constituents, thus the assignment of {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n}. The precipitate was further identified by solid state {sup 27}Al MAS NMR data to possess predominantly octahedral A1 metal center which implies {l_brace}[Al(O)Cl{sub 2}][OSCl{sub 2}]{r_brace}{sub n} must undergo some internal rearrangements. A reaction sequence has been proposed to account for the various molecular species identified in this complex reaction mixture during the aging process. The metallurgical welds were of high quality. These results were all visually determined there was no mechanical testing performed. However, it is recommended that the end plate geometry and weld be changed. If the present weld strength, based on .003' - .005' penetration, is sufficient for unit performance, the end plate thickness can be reduced to .005' instead of the .020' thickness. This will enable the plug to be stamped so that it can form a cap rather than a plug and solve existing problems and increase the amount of catholyte which may be beneficial to battery performance