131 research outputs found
CD1a-positive infiltrating-dendritic cell density and 5-year survival from human breast cancer
© Churchill LivingstoneInfiltrating CD1a+ dendritic cells (DCs) have been associated with increased survival in a number of human cancers. This study investigated DC infiltration within breast cancers and the association with survival. Classical established prognostic factors, of tumour size, lymph node status, histological grade, lympho-vascular invasion, the KI-67 (MIB-1) fraction and the Nottingham Prognostic Index (NPI) were also compared. A total of 48 breast cancer patients were followed from the time of surgery and CD1a density analysis for 5 years or until death. Our data set validated previous studies, which show a relationship between survival and the NPI (P<0.001), tumour size (P<0.01) and lymph node status (P<0.05). Although more patients were alive at the 5-year time point in the group with higher CD1a DC density than the lower CD1a DC group, this failed to reach statistical significance at the P=0.05 level. Analysis at 10 years postsurgery is required to investigate the association further.B.J.Coventry and J. Morto
Construction of tissue microarrays from prostate needle biopsy specimens
Needle biopsies are taken as standard diagnostic specimens for many cancers, but no technique exists for the high-throughput analysis of multiple individual immunohistochemical (IHC) markers using these samples. Here we present a simple and highly reliable technique for constructing tissue microarrays (TMAs) from prostatic needle biopsies. Serial sectioning of the TMAs, called ‘Checkerboard TMAs', facilitated expression analysis of multiple proteins using IHC markers. In total, 100% of the analysed biopsies within the TMA both preserved their antigenicity and maintained their morphology. Checkerboard TMAs will allow the use of needle biopsies (i) alongside other tissue specimens (trans-urethral resection of prostates and prostatectomies in the case of prostate cancer) in clinical correlation studies when searching for new prognostic markers, and (ii) in a diagnostic context for assessing expression of multiple proteins in cancers from patients prior to treatment
Temporal estimation with two moving objects: overt and covert pursuit
The current study examined temporal estimation in a prediction motion task where participants were cued to overtly pursue one of two moving objects, which could either arrive first, i.e., shortest [time to contact (TTC)] or second (i.e., longest TTC) after a period of occlusion. Participants were instructed to estimate TTC of the first-arriving object only, thus making it necessary to overtly pursue the cued object while at the same time covertly pursuing the other (non-cued) object. A control (baseline) condition was also included in which participants had to estimate TTC of a single, overtly pursued object. Results showed that participants were able to estimate the arrival order of the two objects with very high accuracy irrespective of whether they had overtly or covertly pursued the first-arriving object. However, compared to the single-object baseline, participants’ temporal estimation of the covert object was impaired when it arrived 500 ms before the overtly pursued object. In terms of eye movements, participants exhibited significantly more switches in gaze location during occlusion from the cued to the non-cued object but only when the latter arrived first. Still, comparison of trials with and without a switch in gaze location when the non-cued object arrived first indicated no advantage for temporal estimation. Taken together, our results indicate that overt pursuit is sufficient but not necessary for accurate temporal estimation. Covert pursuit can enable representation of a moving object’s trajectory and thereby accurate temporal estimation providing the object moves close to the overt attentional focus
Amyloid-Associated Nucleic Acid Hybridisation
Nucleic acids promote amyloid formation in diseases including Alzheimer's
and Creutzfeldt-Jakob disease. However, it remains unclear whether the close
interactions between amyloid and nucleic acid allow nucleic acid secondary
structure to play a role in modulating amyloid structure and function. Here we
have used a simplified system of short basic peptides with alternating
hydrophobic and hydrophilic amino acid residues to study nucleic acid - amyloid
interactions. Employing biophysical techniques including X-ray fibre
diffraction, circular dichroism spectroscopy and electron microscopy we show
that the polymerized charges of nucleic acids concentrate and enhance the
formation of amyloid from short basic peptides, many of which would not
otherwise form fibres. In turn, the amyloid component binds nucleic acids and
promotes their hybridisation at concentrations below their solution
Kd, as shown by time-resolved FRET studies. The
self-reinforcing interactions between peptides and nucleic acids lead to the
formation of amyloid nucleic acid (ANA) fibres whose properties are distinct
from their component polymers. In addition to their importance in disease and
potential in engineering, ANA fibres formed from prebiotically-produced peptides
and nucleic acids may have played a role in early evolution, constituting the
first entities subject to Darwinian evolution
Peripersonal space representation develops independently from visual experience
Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-To-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation
Endothelial Progenitor Cells Predict Cardiovascular Events after Atherothrombotic Stroke and Acute Myocardial Infarction. A PROCELL Substudy.
Introduction: The aim of this study was to determine prognostic factors for the risk of new vascular events during the first 6 months after acute myocardial infarction (AMI) or atherothrombotic stroke (AS). We were interested in the prognostic role of endothelial progenitor cells (EPC) and circulating endothelial cells (CEC). Methods: Between February 2009 and July 2012, 100 AMI and 50 AS patients were consecutively studied in three Spanish centres. Patients with previously documented coronary artery disease or ischemic strokes were excluded. Samples were collected within 24h of onset of symptoms. EPC and CEC were studied using flow cytometry and categorized by quartiles. Patients were followed for up to 6 months. NVE was defined as new acute coronary syndrome, transient ischemic attack (TIA), stroke, or any hospitalization or death from cardiovascular causes. The variables included in the analysis included: vascular risk factors, carotid intima-media thickness (IMT), atherosclerotic burden and basal EPC and CEC count. Multivariate survival analysis was performed using Cox regression analysis. Results: During follow-up, 19 patients (12.66%) had a new vascular event (5 strokes; 3 TIAs; 4 AMI; 6 hospitalizations; 1 death). Vascular events were associated with age (P = 0.039), carotid IMT≥0.9 (P = 0.044), and EPC count (P = 0.041) in the univariate analysis. Multivariate Cox regression analysis showed an independent association with EPC in the lowest quartile (HR: 10.33, 95%CI (1.22-87.34), P = 0.032] and IMT≥0.9 [HR: 4.12, 95%CI (1.21-13.95), P = 0.023]. Conclusions: Basal EPC and IMT≥0.9 can predict future vascular events in patients with AMI and AS, but CEC count does not affect cardiovascular risk
Sample size considerations for trials using cerebral white matter hyperintensity progression as an intermediate outcome at 1 year after mild stroke: Results of a prospective cohort study
Background: White matter hyperintensities (WMHs) are commonly seen on in brain imaging and are associated with stroke and cognitive decline. Therefore, they may provide a relevant intermediate outcome in clinical trials. WMH can be measured as a volume or visually on the Fazekas scale. We investigated predictors of WMH progression and design of efficient studies using WMH volume and Fazekas score as an intermediate outcome. Methods: We prospectively recruited 264 patients with mild ischaemic stroke and measured WMH volume, Fazekas score, age and cardiovascular risk factors at baseline and 1 year. We modelled predictors of WMH burden at 1 year and used the results in sample size calculations for hypothetical randomised controlled trials with different analysis plans and lengths of follow-up. Results: Follow-up WMH volume was predicted by baseline WMH: a 0.73-ml (95% CI 0.65-0.80, p < 0.0001) increase per 1-ml baseline volume increment, and a 2.93-ml increase (95% CI 1.76-4.10, p < 0.0001) per point on the Fazekas scale. Using a mean difference of 1 ml in WMH volume between treatment groups, 80% power and 5% alpha, adjusting for all predictors and 2-year follow-up produced the smallest sample size (n = 642). Other study designs produced samples sizes from 2054 to 21,270. Sample size calculations using Fazekas score as an outcome with the same power and alpha, as well as an OR corresponding to a 1-ml difference, were sensitive to assumptions and ranged from 2504 to 18,886. Conclusions: Baseline WMH volume and Fazekas score predicted follow-up WMH volume. Study size was smallest using volumes and longer-term follow-up, but this must be balanced against resources required to measure volumes versus Fazekas scores, bias due to dropout and scanner drift. Samples sizes based on Fazekas scores may be best estimated with simulation studies
Amelioration of galactosamine-induced nephrotoxicity by a protein isolated from the leaves of the herb, Cajanus indicus L
<p>Abstract</p> <p>Background</p> <p>Galactosamine (GalN), an established experimental toxin, mainly causes liver injury via the generation of free radicals and depletion of UTP nucleotides. Renal failure is often associated with end stage liver damage. GalN intoxication also induces renal dysfunction in connection with hepatic disorders. Present study was designed to find out the effect of a protein isolated from the leaves of the herb <it>Cajanus indicus </it>against GalN induced renal damage.</p> <p>Methods</p> <p>Both preventive as well as curative effect of the protein was investigated in the study. GalN was administered intraperitoneally at a dose of 800 mg/kg body weight for 3 days pre and post to protein treatment at an intraperitoneal dose of 2 mg/kg body weight for 4 days. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR) and glutathione-S-transferase (GST), levels of cellular metabolites, reduced glutathione (GSH), total thiols, oxidized glutathione (GSSG) and lipid peroxidation end products were determined to estimate the status of the antioxidative defense system. In addition, serum creatinine and urea nitrogen (UN) levels were also measured as a marker of nephrotoxicity.</p> <p>Results</p> <p>Results showed that GalN treatment significantly increased the serum creatinine and UN levels compared to the normal group of mice. The extent of lipid peroxidation and the level of GSSG were also enhanced by the GalN intoxication whereas the activities of antioxidant enzymes SOD, CAT, GR and GST as well as the levels of total thiols and GSH were decreased in the kidney tissue homogenates. Protein treatment both prior and post to the toxin administration successfully altered the effects in the experimental mice.</p> <p>Conclusion</p> <p>Our study revealed that GalN caused a severe oxidative insult in the kidney. Protein treatment both pre and post to the GalN intoxication could protect the kidney tissue against GalN induced oxidative stress. As GalN induced severe hepatotoxicity followed by renal failure, the protective role of the protein against GalN induced renal damages is likely to be an indirect effect. Since the protein possess hepatoprotective activity, it may first ameliorate GalN-induced liver damage and consequently the renal disorders are reduced. To the best of our knowledge, this is probably the first report describing GalN-induced oxidative stress in renal damages and the protective role of a plant protein molecule against it.</p
Unraveling infectious structures, strain variants and species barriers for the yeast prion [PSI+]
Prions are proteins that can access multiple conformations, at least one of which is beta-sheet rich, infectious and self-perpetuating in nature. These infectious proteins show several remarkable biological activities, including the ability to form multiple infectious prion conformations, also known as strains or variants, encoding unique biological phenotypes, and to establish and overcome prion species (transmission) barriers. In this Perspective, we highlight recent studies of the yeast prion [PSI+], using various biochemical and structural methods, that have begun to illuminate the molecular mechanisms by which self-perpetuating prions encipher such biological activities. We also discuss several aspects of prion conformational change and structure that remain either unknown or controversial, and we propose approaches to accelerate the understanding of these enigmatic, infectious conformers
The human keratins: biology and pathology
The keratins are the typical intermediate filament proteins of epithelia, showing an outstanding degree of molecular diversity. Heteropolymeric filaments are formed by pairing of type I and type II molecules. In humans 54 functional keratin genes exist. They are expressed in highly specific patterns related to the epithelial type and stage of cellular differentiation. About half of all keratins—including numerous keratins characterized only recently—are restricted to the various compartments of hair follicles. As part of the epithelial cytoskeleton, keratins are important for the mechanical stability and integrity of epithelial cells and tissues. Moreover, some keratins also have regulatory functions and are involved in intracellular signaling pathways, e.g. protection from stress, wound healing, and apoptosis. Applying the new consensus nomenclature, this article summarizes, for all human keratins, their cell type and tissue distribution and their functional significance in relation to transgenic mouse models and human hereditary keratin diseases. Furthermore, since keratins also exhibit characteristic expression patterns in human tumors, several of them (notably K5, K7, K8/K18, K19, and K20) have great importance in immunohistochemical tumor diagnosis of carcinomas, in particular of unclear metastases and in precise classification and subtyping. Future research might open further fields of clinical application for this remarkable protein family
- …