13 research outputs found
Simulating microstructure evolution during passive mixing
The prediction of microstructure evolution during passive mixing is of major interest in order to qualify and quantify mixing devices as well as to predict the final morphology of the resulting blend. Direct numerical simulation fails because of the different characteristic lengths of the microstructure and the process itself. Micro-macro approaches could be a valuable alternative but the computational cost remains tremendous. For this reason many authors proposed the introduction of some microstructural variables able to qualify and quantify the mixing process at a mesoscale level. Some proposals considered only the effects induced by the flow kinematics, other introduced also the effects of shape relaxation due to the surface tension and coalescence. The most advanced integrate also the break-up process. However, the derivation of the evolution equations governing the evolution of such microstructural variables needs the introduction of some closure relations whose impact on the computed solution should be evaluated before applying it for simulating complex mixing flows. In this work we consider the Lee and Park’s model that considers the flow kinematics, the surface tension, the coalescence and the break-up mechanisms in the evolution of the area tensor. The accuracy of both a quadratic closure and an orthotropic relations will be analyzed in the first part of this work, and then the resulting closed model by using a quadratic closure will be used for simulating complex mixing flows
Deterministic solution of the kinetic theory model of colloidal suspensions of structureless particles
A direct modeling of colloidal suspensions consists of calculating trajectories of all suspended objects. Due to the large time computing and the large cost involved in such calculations, we consider in this paper another route. Colloidal suspensions are described on a mesoscopic level by a distribution function whose time evolution is governed by a Fokker–Plancklike equation. The difficulty encountered on this route is the high dimensionality of the space in which the distribution function is defined. A novel strategy is used to solve numerically the Fokker–Planck equation circumventing the curse of dimensionality issue. Rheological and morphological predictions of the model that includes both direct and hydrodynamic interactions are presented in different flows
Simulating microstructure evolution during passive mixing
The prediction of microstructure evolution during passive mixing is of major interest in order to qualify and quantify mixing devices as well as to predict the final morphology of the resulting blend. Direct numerical simulation fails because of the different characteristic lengths of the microstructure and the process itself. Micro-macro approaches could be a valuable alternative but the computational cost remains tremendous. For this reason many authors proposed the introduction of some microstructural variables able to qualify and quantify the mixing process at a mesoscale level. Some proposals considered only the effects induced by the flow kinematics, other introduced also the effects of shape relaxation due to the surface tension and coalescence. The most advanced integrate also the break-up process. However, the derivation of the evolution equations governing the evolution of such microstructural variables needs the introduction of some closure relations whose impact on the computed solution should be evaluated before applying it for simulating complex mixing flows. In this work we consider the Lee and Park’s model that considers the flow kinematics, the surface tension, the coalescence and the break-up mechanisms in the evolution of the area tensor. The accuracy of both a quadratic closure and an orthotropic relations will be analyzed in the first part of this work, and then the resulting closed model by using a quadratic closure will be used for simulating complex mixing flows
Deterministic solution of the kinetic theory model of colloidal suspensions of structureless particles
A direct modeling of colloidal suspensions consists of calculating trajectories of all suspended objects. Due to the large time computing and the large cost involved in such calculations, we consider in this paper another route. Colloidal suspensions are described on a mesoscopic level by a distribution function whose time evolution is governed by a Fokker–Plancklike equation. The difficulty encountered on this route is the high dimensionality of the space in which the distribution function is defined. A novel strategy is used to solve numerically the Fokker–Planck equation circumventing the curse of dimensionality issue. Rheological and morphological predictions of the model that includes both direct and hydrodynamic interactions are presented in different flows
A mesoscopic rheological model of moderately concentrated colloids
We extend the Maffettone–Minale model by including non-elliptical shapes of dispersed particles, a new family of internal forces controlling particle deformations, and particle–particle interactions. The last extension is made by transposing the way the chain-chain interactions are mathematically expressed in the reptation theory to suspensions. The particle–particle interactions are regarded as a confinement to cages formed by surrounding particles and by introducing a new dissipative motion (an analog of the reptation motion) inside the cages. Nonlinear responses to imposed shear and elongational flows are found to be in qualitative agreement with available experimental data.One of the authors (M.G.) acknowledges the financial support provided by the Natural Sciences and Engineering Research Council of Canada
Contributions to numerical modeling of the kinetic theory of suspensions.
Ce travail présente une contribution à la modélisation numérique des systèmes de suspensions dans le cadre de la théorie cinétique. Cette description continue des systèmes de suspensions permet de prendre en compte l'influence de la structure à l'échelle microscopique sur la cinétique de l'écoulement macroscopique. Cependant elle présente l'inconvénient majeur d'être définie sur un espace à haute dimension et rend alors difficile la résolution de ces modèles avec des approches déterministes classiques. Afin de s'affranchir, ou du moins d'alléger, le poids du caractère micro-macro des approches en théorie cinétique, plusieurs techniques de réduction dimensionnelle s'appuyant sur l'utilisation de la Décomposition Généralisée en modes Propres (PGD) sont présentées. Une étude de différents algorithmes PGD est conduite, et dont l'efficacité en termes de vitesse de convergence et d'optimalité de la solution est illustrée. La simulation de mélanges de fluides immiscibles est conduite à l'aide du Tenseur d'aire qui est un puissant outil de caractérisation du mélange. Cependant celui-ci nécessite l'introduction d'une relation de fermeture dont l'impact est évalué avec le modèle de théorie cinétique équivalent et exact. Finalement, la simulation de systèmes de suspensions colloïdales décrits par l'équation de Smoluchowski présente une approche originale de la modélisation des suspensions solides. Cette approche permet de s'affranchir avantageusement du bruit statistique inhérent aux simulations stochastiques traditionnellement mises en œuvre.This work is a contribution to the numerical modeling of suspension system in the kinetic theory framework. This continuum description of suspension system allows to account for the microstructure impact on the kinetic of the macroscopic flow. However, its main drawback is related to the high dimensional spaces in which kinetic theory models are defined and makes difficult for classical deterministic approaches to solve such systems. One possibility for circumventing, or at least alleviate, the weight of the micro-macro kinetic theory approaches lies in the use of separated representations strategies based on the Proper Generalized Decomposition (PGD). A study of different PGD algorithms is driven, illustrating the efficiency of these algorithms in terms of convergence speed and optimality of the solution obtained. The immiscible fluids blends modeling is driven using the area tensor which is a powerful numerical tool for characterizing blends. However it needs the introduction of closure relation of which impact is measured using equivalent and exact kinetic theory model. Finally, the numerical modeling of colloidal suspension system described by the Smoluchowski equation presents an original approach of the modeling of solid suspension system. This description allows to circumvent the statistical noise inherent to the stochastic approaches commonly used
Couplages moléculaire- théorie cinétique pour la simulation du comportement des matériaux complexes
This work is a contribution to the numerical modeling of suspension system in the kinetic theory framework. This continuum description of suspension system allows to account for the microstructure impact on the kinetic of the macroscopic flow. However, its main drawback is related to the high dimensional spaces in which kinetic theory models are defined and makes difficult for classical deterministic approaches to solve such systems. One possibility for circumventing, or at least alleviate, the weight of the micro-macro kinetic theory approaches lies in the use of separated representations strategies based on the Proper Generalized Decomposition (PGD). A study of different PGD algorithms is driven, illustrating the efficiency of these algorithms in terms of convergence speed and optimality of the solution obtained. The immiscible fluids blends modeling is driven using the area tensor which is a powerful numerical tool for characterizing blends. However it needs the introduction of closure relation of which impact is measured using equivalent and exact kinetic theory model. Finally, the numerical modeling of colloidal suspension system described by the Smoluchowski equation presents an original approach of the modeling of solid suspension system. This description allows to circumvent the statistical noise inherent to the stochastic approaches commonly used.Ce travail présente une contribution à la modélisation numérique des systèmes de suspensions dans le cadre de la théorie cinétique. Cette description continue des systèmes de suspensions permet de prendre en compte l'influence de la structure à l'échelle microscopique sur la cinétique de l'écoulement macroscopique. Cependant elle présente l'inconvénient majeur d'être définie sur un espace à haute dimension et rend alors difficile la résolution de ces modèles avec des approches déterministes classiques. Afin de s'affranchir, ou du moins d'alléger, le poids du caractère micro-macro des approches en théorie cinétique, plusieurs techniques de réduction dimensionnelle s'appuyant sur l'utilisation de la Décomposition Généralisée en modes Propres (PGD) sont présentées. Une étude de différents algorithmes PGD est conduite, et dont l'efficacité en termes de vitesse de convergence et d'optimalité de la solution est illustrée. La simulation de mélanges de fluides immiscibles est conduite à l'aide du Tenseur d'aire qui est un puissant outil de caractérisation du mélange. Cependant celui-ci nécessite l'introduction d'une relation de fermeture dont l'impact est évalué avec le modèle de théorie cinétique équivalent et exact. Finalement, la simulation de systèmes de suspensions colloïdales décrits par l'équation de Smoluchowski présente une approche originale de la modélisation des suspensions solides. Cette approche permet de s'affranchir avantageusement du bruit statistique inhérent aux simulations stochastiques traditionnellement mises en œuvre
Définition Microstructurale du Mélange : Évaluation de l'Impact des Relations de Fermeture en Écoulement Complexe
Le mélange de fluides immiscibles est fréquemment utilisé dans de nombreuses applications industrielles. Une approche directe de la représentation de cette interface est impossible du fait de la différence de taille caractéristique entre la microstructure et le procédé lui-même. Pour cette raison, le mélange est décrit à l’aide du tenseur d’aire qui est une variable microstructurale. Cependant, le calcul du tenseur d’aire nécessite l’introduction d’une relation de fermeture dont nous évaluerons l’impact dans un écoulement complexe
Couplages moléculaire- théorie cinétique pour la simulation du comportement des matériaux complexes
Ce travail présente une contribution à la modélisation numérique des systèmes de suspensions dans le cadre de la théorie cinétique. Cette description continue des systèmes de suspensions permet de prendre en compte l'influence de la structure à l'échelle microscopique sur la cinétique de l'écoulement macroscopique. Cependant elle présente l'inconvénient majeur d'être définie sur un espace à haute dimension et rend alors difficile la résolution de ces modèles avec des approches déterministes classiques. Afin de s'affranchir, ou du moins d'alléger, le poids du caractère micro-macro des approches en théorie cinétique, plusieurs techniques de réduction dimensionnelle s'appuyant sur l'utilisation de la Décomposition Généralisée en modes Propres (PGD) sont présentées. Une étude de différents algorithmes PGD est conduite, et dont l'efficacité en termes de vitesse de convergence et d'optimalité de la solution est illustrée. La simulation de mélanges de fluides immiscibles est conduite à l'aide du Tenseur d'aire qui est un puissant outil de caractérisation du mélange. Cependant celui-ci nécessite l'introduction d'une relation de fermeture dont l'impact est évalué avec le modèle de théorie cinétique équivalent et exact. Finalement, la simulation de systèmes de suspensions colloïdales décrits par l'équation de Smoluchowski présente une approche originale de la modélisation des suspensions solides. Cette approche permet de s'affranchir avantageusement du bruit statistique inhérent aux simulations stochastiques traditionnellement mises en œuvre.This work is a contribution to the numerical modeling of suspension system in the kinetic theory framework. This continuum description of suspension system allows to account for the microstructure impact on the kinetic of the macroscopic flow. However, its main drawback is related to the high dimensional spaces in which kinetic theory models are defined and makes difficult for classical deterministic approaches to solve such systems. One possibility for circumventing, or at least alleviate, the weight of the micro-macro kinetic theory approaches lies in the use of separated representations strategies based on the Proper Generalized Decomposition (PGD). A study of different PGD algorithms is driven, illustrating the efficiency of these algorithms in terms of convergence speed and optimality of the solution obtained. The immiscible fluids blends modeling is driven using the area tensor which is a powerful numerical tool for characterizing blends. However it needs the introduction of closure relation of which impact is measured using equivalent and exact kinetic theory model. Finally, the numerical modeling of colloidal suspension system described by the Smoluchowski equation presents an original approach of the modeling of solid suspension system. This description allows to circumvent the statistical noise inherent to the stochastic approaches commonly used.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF