27 research outputs found

    The effects of a multisite aerobic exercise intervention on asthma morbidity in sedentary adults with asthma: the Ex-asthma study randomised controlled trial protocol

    Get PDF
    Objective: Aerobic exercise can improve cardiovascular fitness and does not seem to be detrimental to patients with asthma, though its role in changing asthma control and inflammatory profiles is unclear. The main hypothesis of the current randomised controlled trial is that aerobic exercise will be superior to usual care in improving asthma control. Key secondary outcomes are asthma quality of life and inflammatory profiles. Design: A total of 104 sedentary adults with physician-diagnosed asthma will be recruited. Eligible participants will undergo a series of baseline assessments including: the asthma control questionnaire; the asthma quality-of-life questionnaire and the inflammatory profile (assessed from both the blood and sputum samples). On completion of the assessments, participants will be randomised (1:1 allocation) to either 12-weeks of usual care or usual care plus aerobic exercise. Aerobic exercise will consist of three supervised training sessions per week. Each session will consist of taking a short-acting bronchodilator, 10 min of warm-up, 40 min of aerobic exercise (50–75% of heart rate reserve for weeks 1–4, then 70–85% for weeks 5–12) and a 10 min cool-down. Within 1 week of completion, participants will be reassessed (same battery as at baseline). Analyses will assess the difference between the two intervention arms on postintervention levels of asthma control, quality of life and inflammation, adjusting for age, baseline inhaled corticosteroid prescription, body weight change and pretreatment dependent variable level. Missing data will be handled using standard multiple imputation techniques. Ethics and dissemination: The study has been approved by all relevant research ethics boards. Written consent will be obtained from all participants who will be able to withdraw at any time. Results: The result will be disseminated to three groups of stakeholder groups: (1) the scientific and professional community; (2) the research participants and (3) the general public. Registration Details: ClinicalTrials.gov Identifier NCT0095334

    Perturbation of adhesion molecule-mediated chondrocyte-matrix interactions by 4-hydroxynonenal binding: implication in osteoarthritis pathogenesis

    Get PDF
    ABSTRACT: INTRODUCTION: Objectives were to investigate whether interactions between human osteoarthritic chondrocytes and 4-hydroxynonenal (HNE)-modified type II collagen (Col II) affect cell phenotype and functions and to determine the protective role of carnosine (CAR) treatment in preventing these effects. METHODS: Human Col II was treated with HNE at different molar ratios (MR) (1:20 to 1:200; Col II:HNE). Articular chondrocytes were seeded in HNE/Col II adduct-coated plates and incubated for 48 hours. Cell morphology was studied by phase-contrast and confocal microscopy. Adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and alpha1beta1 integrin at protein and mRNA levels were quantified by Western blotting, flow cytometry and real-time reverse transcription-polymerase chain reaction. Cell death, caspases activity, prostaglandin E2 (PGE2), metalloproteinase-13 (MMP-13), mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-kappaB) were assessed by commercial kits. Col II, cyclooxygenase-2 (COX-2), MAPK, NF-kappaB-p65 levels were analyzed by Western blotting. The formation of alpha1beta1 integrin-focal adhesion kinase (FAK) complex was revealed by immunoprecipitation. RESULTS: Col II modification by HNE at MR approximately 1:20, strongly induced ICAM-1, alpha1beta1 integrin and MMP-13 expression as well as extracellular signal-regulated kinases 1 and 2 (ERK1/2) and NF-kappaB-p65 phosphorylation without impacting cell adhesion and viability or Col II expression. However, Col II modification with HNE at MR approximately 1:200, altered chondrocyte adhesion by evoking cell death and caspase-3 activity. It inhibited alpha1beta1 integrin and Col II expression as well as ERK1/2 and NF-kappaB-p65 phosphorylation, but, in contrast, markedly elicited PGE2 release, COX-2 expression and p38 MAPK phosphorylation. Immunoprecipitation assay revealed the involvement of FAK in cell-matrix interactions through the formation of alpha1beta1 integrin-FAK complex. Moreover, the modification of Col II by HNE at a 1:20 or approximately 1:200 MR affects parameters of the cell shape. All these effects were prevented by CAR, an HNE-trapping drug. CONCLUSIONS: Our novel findings indicate that HNE-binding to Col II results in multiple abnormalities of chondrocyte phenotype and function, suggesting its contribution in osteoarthritis development. CAR was shown to be an efficient HNE-snaring agent capable of counteracting these outcomes

    Synthesis of eicosanoids by isolated guinea pig tracheocytes

    No full text

    Présence de Dasypoda maura Perez, 1895, en Algérie

    No full text
    K. Louadi, Maghni Noudjoud, Benachour Karima, Aguib Sihem, Berchi Selima, Mihoubi I. Présence de Dasypoda maura Perez, 1895, en Algérie. In: Bulletin de la Société entomologique de France, volume 112 (2), juin 2007. p. 252

    Effects of extracellular triphosphate nucleotides and nucleosides on airway smooth muscle cell proliferation.

    No full text
    Extracellular ATP and uridine triphosphate (UTP) have a range of effects on a wide variety of cells through the activation of P(2) receptors. The aim of this work was to establish if stimulation with ATP and UTP enhances airway smooth muscle (ASM) cell proliferation and to determine the type of receptor mediating this effect. Proliferation of rat ASM cells was assessed through bromodeoxyuridine (BrdU) uptake and by cell counting. At concentrations of 10(-6) and 10(-5) M, ATP and UTP induced significant increases in BrdU incorporation. ATP analogs specific for the P(2X) and P(2Y1) receptor subtypes had no effect. UDP (a P(2Y6) receptor agonist) produced significant decreases in BrdU incorporation and cell counts. Adenosine, the metabolite of ATP, produced an increase in cell proliferation through stimulation of the A(1) receptor. A(2) and A(3) receptor stimulation had no effect. Reverse transcription and polymerase chain reaction analysis showed that mRNA transcripts for the P(2Y2), P(2Y4), P(2Y6), A(1), A(2), and A(3) receptor subtypes were present in cultured ASM cells. These data show that extracellular UTP, ATP, and their metabolites may affect airway remodeling by increasing or by reducing (P(2Y6) receptor) ASM cell proliferation
    corecore