18 research outputs found

    The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae

    Get PDF
    The rice blast fungus Magnaporthe oryzae elaborates a specialized cell called an appressorium, which is used to breach the tough outer cuticle of a rice leaf, enabling the fungus entry to host plant cells. The appressorium generates enormous turgor by accumulating glycerol to very high concentrations within the cell. Glycerol accumulation and melanization of the appressorium cell wall collectively drive turgor-mediated penetration of the rice leaf. In this review, we discuss the potential metabolic sources of glycerol in the rice blast fungus and how appressorium turgor is focused as physical force at the base of the infection cell, leading to the formation of a rigid penetration peg. We review recent studies of M. oryzae and other relevant appressorium-forming fungi which shed light on how glycerol is synthesized and how appressorium turgor is regulated. Finally, we provide some questions to guide avenues of future research that will be important in fully understanding the role of glycerol in rice blast disease

    In yeast, loss of Hog1 leads to osmosensitivity of autophagy

    Full text link
    In mammalian liver, proteolysis is regulated by the cellular hydration state in a microtubule- and p38(MAPK) (p38 mitogen-activated protein kinase)-dependent fashion. Osmosensing in liver cells towards proteolysis is achieved by activation of integrin receptors. The yeast orthologue of p38(MAPK) is Hog1 (high-osmolarity glycerol 1), which is involved in the hyperosmotic-response pathway. Since it is not known whether starvation-induced autophagy in yeast is osmosensitive and whether Hog1 is involved in this process, we performed fluorescence microscopy experiments. The hog1Δ cells exhibited a visible decrease of autophagy in hypo-osmotic and hyperosmotic nitrogen-starvation medium as compared with normo-osmolarity, as determined by GFP (green fluorescent protein)–Atg8 (autophagy-related 8) fluorescence. Western blot analysis of GFP–Atg8 degradation showed that WT (wild-type) cells maintained a stable autophagic activity over a broad osmolarity range, whereas hog1Δ cells showed an impaired autophagic actitivity during hypo- and hyper-osmotic stress. In [(3)H]leucine-pre-labelled yeast cells, the proteolysis rate was osmodependent only in hog1Δ cells. Neither maturation of pro-aminopeptidase I nor vitality was affected by osmotic stress in either yeast strain. In contrast, rapamycin-dependent autophagy, as measured by degradation of GFP–Atg8, did not significantly respond to hypo-osmotic or hyperosmotic stress in hog1Δ or WT cells. We conclude that Hog1 plays a role in the stabilization machinery of nitrogen-deprivation-induced autophagy in yeast cells during ambient osmolarity changes. This could be an analogy to the p38(MAPK) pathway in mammalian liver, where osmosensing towards p38(MAPK) is required for autophagy regulation by hypo-osmotic or amino-acid-induced cell swelling. A phenotypic difference is observed in rapamycin-induced autophagy, which does not seem to respond to extracellular osmolarity changes in hog1Δ cells
    corecore