37 research outputs found

    Food Value Of Mealworm Grown On Acrocomia Aculeata Pulp Flour

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Insects have played an important role as human food throughout history, especially in Africa, Asia and Latin America. A good example of edible insects is the mealworm, Tenebrio molitor Linnaeus, 1758 (Coleoptera, Tenebrionidae), which are eaten in Africa, Asia, the Americas and Australia. This species is easily bred in captivity, requiring simple management. The bocaiuva (Acrocomia aculeata (Jacq.) Lodd) is an abundant palm tree found in the Brazilian Cerrado, providing fruits with high nutritional value. The aim of this work was to determine the chemical composition of T. molitor grown in different artificial diets with bocaiuva pulp flour. The nutritional composition, fatty acid composition, antioxidant activity, trypsin activity and anti-nutritional factors of larvae were analyzed. The results showed that mealworms grown on artificial diet with bocaiuva are a good source of protein (44.83%) and lipid (40.45%), with significant levels of unsaturated fatty acids (65.99%), antioxidant activity (4.5 uM Trolox/g of oil extracted from larvae) and absence of anti-nutritional factors. This study indicates a new source of biomass for growing mealworms and shows that it is possible to breed mealworms in artificial diet with bocaiuva flour without compromising the nutritional quality of the larvae. © 2016 Alves et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.113CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Insecticidal Effect Of Labramin, A Lectinlike Protein Isolated From Seeds Of The Beach Apricot Tree, Labramia Bojeri, On The Mediterranean Flour Moth, Ephestia Kuehniella

    Get PDF
    The objective of this work was to study the insecticidal effect of labramin, a protein that shows lectinlike properties. Labramin was isolated from seeds of the Beach Apricot tree, Labramia bojeri A. DC ex Dubard (Ericales: Sapotaceae), and assessed against the development of the Mediterranean flour moth Ephestia kuehniella Zeller (Lepidoptera: Pyralidae), an important pest of stored products such as corn, wheat, rice, and flour. Results showed that labramin caused 90% larval mortality when incorporated in an artificial diet at a level of 1% (w/w). The presence of 0.25% labramin in the diet affected the larval and pupal developmental periods and the percentage of emerging adults. Treatments resulted in elevated levels of trypsin activity in midgut and fecal materials, indicating that labramin may have affected enzymeregulatory mechanisms by perturbing peritrophic membranes in the midgut of is. kuehniella larvae. The results of dietary experiments with E. kuehniella larvae showed a reduced efficiency for the conversion of ingested and digested food, and an increase in approximate digestibility and metabolic cost. These findings suggest that labramin may hold promise as a control agent to engineer crop plants for insect resistance. © This is an open access paper. We use the Creative Commons Attribution 3.0 license that permits unrestricted use, provided that the paper is properly attributed.12Ayvaz, A., Osman, S., Salih, K., Ismet, O., Insecticidal activity of the essential oils from different plants against three stored-product insects (2008) Journal of Insect Science, 10, p. 21. , insectscience.org/10.21Boobis, A.R., Ossendorp, B.C., Banasiak, U., Hamey, P.Y., Sebestyen, I., Moretto, A., Cumulative risk assessment of pesticide residues in food (2008) Toxicology Letters, 15, pp. 137-150Boleti, A.P., Kubo, C.E.G., MacEdo, M.L.R., Effect of Pouterin, a protein from Pouteria torta (Sapotaceae) seeds, on the development of Ephestia kuehniella (Lepidoptera: Pyralidae) (2009) International Journal of Tropical Insect Science, 29, pp. 24-30Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding (1976) Analytical Biochemistry, 72, pp. 248-254Carlini, C.R., Grossi-De-Sa, M.F., Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides (2002) Toxicon, 40 (11), pp. 1515-1539. , DOI 10.1016/S0041-0101(02)00240-4, PII S0041010102002404Coelho, M.B., Marangoni, S., Macedo, M.L.R., Insecticidal action of Annona coriacea lectin against the flour moth Anagasta kuehniella and the rice moth Corcyra cephalonica (Lepidoptera: Pyralidae) (2007) Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 146 (3), pp. 406-414. , DOI 10.1016/j.cbpc.2007.05.001, PII S1532045607001354Eisemann, C.H., Donaldson, R.A., Pearson, R.D., Cadagon, L.C., Vacuolo, T., Tellman, R.L., Larvicidal activity of lectins on Lucilia cuprina: Mechanism of action (1994) Entomologia Experimentalis et Applicata, 72, pp. 1-11Fabre, C., Causse, H., Mourey, L., Koninkx, J., Riviere, M., Hendriks, H., Puzo, G., Rouge, P., Characterization and sugar-binding properties of arcelin-1, an insecticidal lectin-like protein isolated from kidney bean (Phaseolus vulgaris L. Cv. RAZ-2) seeds (1998) Biochemical Journal, 329 (3), pp. 551-560Farrar, R.R., Barbour, J.D., Kennedy, G.G., Quantifying food consumption and growth in insects (1989) Annals of the Entomological Society of America, 82, pp. 593-598Fitches, E., Gatehouse, A.M.R., Gatehouse, J.A., Effects of snowdrop lectin (GNA) delivered via artificial diet and transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials (1997) Journal of Insect Physiology, 43 (8), pp. 727-739. , DOI 10.1016/S0022-1910(97)00042-5, PII S0022191097000425Fitches, E., Gatehouse, J.A., A comparison of the short and long term effects of insecticidal lectins on the activities of soluble and brush border enzymes of tomato moth larvae (Lacanobia oleracea) (1998) Journal of Insect Physiology, 44 (12), pp. 1213-1224. , DOI 10.1016/S0022-1910(98)00090-0, PII S0022191098000900Fitches, E., Wiles, D., Douglas, A.E., Hinchliffe, G., Audsley, N., Gatehouse, J.A., The insecticidal activity of recombinant garlic lectins towards aphids (2008) Insect Biochemistry and Molecular Biology, 38, pp. 905-915Gatehouse, A.M., Powell, K.S., Peumans, W.J., Van Damme, E.J., Gatehouse, J.A., Insecticidal properties of plant lectins: Their potential in plant protection (1995) Lectins: Biomedical Perspectives, pp. 35-58. , Pusztai A, Bardocz S, Editors. Taylor and FrancisHarper, M.S., Hopkins, T.L., Czapla, T.H., Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae (1998) Tissue and Cell, 30 (2), pp. 166-176. , DOI 10.1016/S0040-8166(98)80065-7Hosseininaveh, V., Bandani, A., Hosseininaveh, F., Digestive proteolytic activity in the Sunn pest, Eurygaster integriceps (2009) Journal of Insect Science, 9, p. 70. , insectscience.org/9.70Laemmili, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227, pp. 680-685Lam, S.K., Ng, T.B., Lectins: Production and practical applications (2011) Applied Microbiology and Biotechnology, 89, pp. 45-55MacEdo, M.L.R., Fernandes, K.V.S., Sales, M.P., Xavier-Filho, J., Vicilins variants and the resistance of cowpea (Vigna unguiculata) seeds to the cowpea weevil (Callosobruchus maculatus) (1993) Comparative Biochemistry and Physiology, 105, pp. 84-94MacEdo, M.L.R., Durigan, R.A., Silva, D.S., Marangoni, S., Freire, M.G.M., Parra, J.R.P., Adenanthera pavonina trypsin inhibitor retard growth of Ephestia kuehniella (Lepidoptera: Pyralidae) (2010) Archives of Insect Biochemistry and Physiology, 73, pp. 213-231MacEdo, M.L.R., Damico, D.C.S., Freire, M.G.M., Toyama, M.H., Marangoni, S., Novello, J.C., Purification and characterization of an Nacetylglucosamine- binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Ephestia kuehniella (Lepidoptera: Pyralidae) (2003) Journal of Agricultural and Food Chemistry, 51, pp. 2980-2986MacEdo, M.L.R., Freire, M.G.M., Martins, L.T.D.M., Martinez, D.S.T., Gomes, V.M., Smolka, M.B., Toyama, M.H., Coelho, L.C.B.B., Novel protein from Labramia bojeri A. DC. Seeds homologue to kunitz-type trypsin inhibitor with lectin-like properties (2004) Journal of Agricultural and Food Chemistry, 52, pp. 7548-7554Macedo, M.L.R., De Castro, M.M., Freire, M.D.G.M., Mechanisms of the insecticidal action of TEL (Talisia esculenta Lectin) against Callosobruchus maculatus (Coleoptera: Bruchidae) (2004) Archives of Insect Biochemistry and Physiology, 56 (2), pp. 84-96. , DOI 10.1002/arch.10145Macedo, M.L.R., Freire, M.D.G.M., Da Silva, M.B.R., Coelho, L.C.B.B., Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae) (2007) Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 146 (4), pp. 486-498. , DOI 10.1016/j.cbpa.2006.01.020, PII S1095643306000316, Second Special Issue of CBP dedicated to "The Face of Latin American Comparative Biochemistry and Physiology"Machuka, J., Van Damme, E.J.M., Peumans, W.J., Jackai, L.E.N., Effect of plant lectins on larval development of the legume pod borer, Maruca vitrata (1999) Entomologia Experimentalis et Applicata, 93 (2), pp. 179-187. , DOI 10.1023/A:1003801120192Murdock, L.L., Shade, R.E., Lectins and protease inhibitors as plant defenses against insects (2002) Journal of Agricultural and Food Chemistry, 50 (22), pp. 6605-6611. , DOI 10.1021/jf020192cOliveira, C.F.R., Luz, L.A., Paiva, P.M.G., Coelho, L.C.B.B., Marangoni, S., MacEdo, M.L.R., Evaluation of seed coagulant Moringa oleifera lectin (cMoL) as a bioinsecticidal tool with potential for the control of insects (2011) Process Biochemistry, 46, pp. 498-504Pusztai, A., Ewen, S.W.B., Grant, G., Peumans, W.J., Van Damme, E.J.M., Rubio, L., Bardocz, S., Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness as growth factors (1990) Digestion, 46 (SUPPL. 2), pp. 308-316Scriber, J.M., Slansky Jr., F., He nutritional ecology of immature insects (1981) Annual Review of Entomology, 26, pp. 183-211Sharma, H.C., Sharma, K.K., Crouch, J.H., Genetic transformation of crops for insect resistance: Potential and limitations (2004) Critical Reviews in Plant Sciences, 23 (1), pp. 47-72. , DOI 10.1080/07352680490273400Srinivasan, A., Giri, A.P., Gupta, V.S., Structural and functional diversities in lepidopteran serine proteases (2006) Cellular and Molecular Biology Letters, 11 (1), pp. 132-154. , http://www.springerlink.com/content/r034203283014155/fulltext.pdf, DOI 10.2478/s11658-006-0012-8Terra, W.R., Ferreira, C., Jordao, B.P., Dilion, R.J., Digestive enzymes (1996) Biology of the Insect Midgut, pp. 153-194. , Lehane MJ, Billingsley PF, Editors. Chapman and HallTerra, W.R., The origin and functions of the insect peritrophic membrane and peritrophic gel (2001) Archives of Insect Biochemistry and Physiology, 47 (2), pp. 47-61. , DOI 10.1002/arch.1036Vandenborre, G., Smagghe, G., Van Damme, E.J., Plant lectins as defense proteins against phytophagous insects (2011) Phytochemistry, 72 (13), pp. 1538-1550Vasconcelos, I.M., Oliveira, J.T.A., Ntinutritional properties of plant lectins (2004) Toxicon, 15, pp. 385-403Wang, P., Granados, R.R., Molecular structure of the peritrophic membrane (PM): Identification of potential PM target sites for insect control (2001) Archives of Insect Biochemistry and Physiology, 47 (2), pp. 110-118. , DOI 10.1002/arch.1041Wheeler, D.A., Isman, M.B., Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura (2001) Entomologia Experimentalis et Applicata, 98 (2), pp. 9-1

    Effects of hot and cold smoking processes on organoleptic properties, yield and composition of matrinxa fillet

    Full text link
    The effects of hot (45-90ºC/5 hours) and cold (27-45ºC/10 hours) smoking processes on the organoleptic properties, yield and composition of matrinxa (Brycon cephalus) fillets are evaluated. No significant differences were observed for fillet yield in both non-smoked and smoked fillets. Smoking process losses were significantly higher for hot smoked (19.37%) when compared to cold smoked (17.08%). Smoking process reduced moisture (in natura = 72.91%, for hot = 58.51% and cold = 59.68%) and increased crude protein, lipid and ash contents. However, there was a significant difference only for protein level between hot smoked (28.07%) and cold smoked (27.14%). Cold smoked process resulted in better fillet appearance and color, while hot smoked presented superior flavor, salt content and general acceptance. Aroma and texture did not differ significantly among processes. Therefore, hot smoking process shows the best results for organoleptic properties and protein levels.Foi avaliado o efeito do processo de defumação a quente (45-90ºC/5 horas) e a frio (27-45ºC/10 horas) nas propriedades organolépticas, no rendimento e na composição dos filés de matrinxã (Brycon cephalus). Não houve diferença significativa no rendimento de filés defumados e não-defumados. As perdas no processo de defumação foram significativamente maiores para defumação a quente (19,37%) em comparação à defumação a frio (17,08%). O processo de defumação reduziu a umidade (in natura = 72,91%; defumado a quente = 58,51%; e defumado a frio = 59,68%) e aumentou os teores de proteína bruta, lipídios e cinzas. Houve diferença significativa somente nos teores de proteína no defumado a quente (28,07%) e defumado a frio (27,14%). O processo a frio resultou em melhor aparência e cor de filé, enquanto o processo a quente melhorou o sabor, o teor de sal e a aparência geral. O aroma e a textura não diferiram significativamente entre os processos. O processo de defumação a quente melhora as propriedades organolépticas e os níveis de proteína do filé de matrinxã

    Qualidade microbiológica e vida útil de filés defumados de tilápia-do-nilo sob refrigeração ou congelamento

    Get PDF
    O objetivo deste trabalho foi avaliar a qualidade microbiológica e a vida útil de filés de tilápia-do-nilo, submetidos a diferentes métodos de defumação e condições de armazenamento. Foram utilizados dois processos de defumação (a frio ou a quente), em filés com ou sem pigmentação. Os produtos foram armazenados sob refrigeração ou congelados, e monitorados por 28 dias para avaliação da vida útil. Os filés congelados foram monitorados continuamente por 146 dias, apenas para a análise de ácido tiobarbitúrico (TBA). Defumação a quente e a frio reduziram a quantidade de coliformes, respectivamente em 99,78% e 97,80%. O armazenamento do produto sob refrigeração permitiu a redução de 99,73% dos coliformes, e o armazenamento sob congelamento os reduziu em 99,83%. Os valores encontrados de coliformes fecais estiveram dentro do limite permitido. Os valores de TBA nos filés atingiram o máximo no 14o dia de armazenamento. Os valores de TBA nos tratamentos sob refrigeração foram superiores aos daqueles sob congelamento e, também, em filés defumados a frio, em comparação aos defumados a quente. O processo de defumação a quente, com posterior armazenamento sob congelamento, é a técnica mais apropriada para assegurar qualidade e maior período de vida útil para os filés de tilápia-do-nilo, independentemente do processo de pigmentação
    corecore