2 research outputs found

    On Black Attractors in 8D and Heterotic/Type IIA Duality

    Full text link
    Motivated by the study of black attractors in 8D supergravity with 16 supersymmetries, we use the field theory approach and 8D supersymmetry with non trivial central charges to shed light on the exact duality between heterotic string on T^2 and type IIA on real connected and compact surfaces {\Sigma}2. We investigate the two constraints that should be obeyed by {\Sigma}2 and give their solutions in terms of intersecting 2-cycles as well their classification using Dynkin diagrams of affine Kac-Moody algebras. It is shown as well that the moduli space of these dual theories is given by SO(1,1)x((SO(2,r+2))/(SO(2)xSO(r+2))) where r stands for the rank of the gauge symmetry G_{r} of the 10D heterotic string on T^2. The remarkable cases r=-2,-1,0 as well as other features are also investigated.Comment: LaTex, 18 pages, 2 figures, To appear in JHE

    Mutation Symmetries in BPS Quiver Theories: Building the BPS Spectra

    Full text link
    We study the basic features of BPS quiver mutations in 4D N=2\mathcal{N}=2 supersymmetric quantum field theory with G=ADEG=ADE gauge symmetries.\ We show, for these gauge symmetries, that there is an isotropy group GMutG\mathcal{G}_{Mut}^{G} associated to a set of quiver mutations capturing information about the BPS spectra. In the strong coupling limit, it is shown that BPS chambers correspond to finite and closed groupoid orbits with an isotropy symmetry group GstrongG\mathcal{G}_{strong}^{G} isomorphic to the discrete dihedral groups Dih2hGDih_{2h_{G}} contained in Coxeter(G)(G) with % h_{G} the Coxeter number of G. These isotropy symmetries allow to determine the BPS spectrum of the strong coupling chamber; and give another way to count the total number of BPS and anti-BPS states of N=2\mathcal{N}=2 gauge theories. We also build the matrix realization of these mutation groups GstrongG% \mathcal{G}_{strong}^{G} from which we read directly the electric-magnetic charges of the BPS and anti-BPS states of N=2\mathcal{N}=2 QFT4_{4} as well as their matrix intersections. We study as well the quiver mutation symmetries in the weak coupling limit and give their links with infinite Coxeter groups. We show amongst others that Gweaksu2\mathcal{G}_{weak}^{su_{2}} is contained in GL(2,Z){GL}({2,}\mathbb{Z}) ; and isomorphic to the infinite Coxeter I2∞{I_{2}^{\infty}}. Other issues such as building G\mathcal{G}%_{weak}^{so_{4}} and Gweaksu3\mathcal{G}_{weak}^{su_{3}} are also studied.Comment: LaTeX, 98 pages, 18 figures, Appendix I on groupoids adde
    corecore