19 research outputs found
Droplet-like Fermi surfaces in the anti-ferromagnetic phase of EuFeAs, an Fe-pnictide superconductor parent compound
Using angle resolved photoemission it is shown that the low lying electronic
states of the iron pnictide parent compound EuFeAs are strongly
modified in the magnetically ordered, low temperature, orthorhombic state
compared to the tetragonal, paramagnetic case above the spin density wave
transition temperature. Back-folded bands, reflected in the orthorhombic/
anti-ferromagnetic Brillouin zone boundary hybridize strongly with the
non-folded states, leading to the opening of energy gaps. As a direct
consequence, the large Fermi surfaces of the tetragonal phase fragment, the low
temperature Fermi surface being comprised of small droplets, built up of
electron and hole-like sections. These high resolution ARPES data are therefore
in keeping with quantum oscillation and optical data from other undoped
pnictide parent compounds.Comment: 4 figures, 6 page
Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors
In the first three years since the discovery of Fe-based high Tc
superconductors, scanning tunneling microscopy (STM) and spectroscopy have shed
light on three important questions. First, STM has demonstrated the complexity
of the pairing symmetry in Fe-based materials. Phase-sensitive quasiparticle
interference (QPI) imaging and low temperature spectroscopy have shown that the
pairing order parameter varies from nodal to nodeless s\pm within a single
family, FeTe1-xSex. Second, STM has imaged C4 -> C2 symmetry breaking in the
electronic states of both parent and superconducting materials. As a local
probe, STM is in a strong position to understand the interactions between these
broken symmetry states and superconductivity. Finally, STM has been used to
image the vortex state, giving insights into the technical problem of vortex
pinning, and the fundamental problem of the competing states introduced when
superconductivity is locally quenched by a magnetic field. Here we give a
pedagogical introduction to STM and QPI imaging, discuss the specific
challenges associated with extracting bulk properties from the study of
surfaces, and report on progress made in understanding Fe-based superconductors
using STM techniques.Comment: 36 pages, 23 figures, 229 reference