9 research outputs found

    Improved Phenomenological Renormalization Schemes

    Full text link
    An analysis is made of various methods of phenomenological renormalization based on finite-size scaling equations for inverse correlation lengths, the singular part of the free energy density, and their derivatives. The analysis is made using two-dimensional Ising and Potts lattices and the three-dimensional Ising model. Variants of equations for the phenomenological renormalization group are obtained which ensure more rapid convergence than the conventionally used Nightingale phenomenological renormalization scheme. An estimate is obtained for the critical finite-size scaling amplitude of the internal energy in the three-dimensional Ising model. It is shown that the two-dimensional Ising and Potts models contain no finite-size corrections to the internal energy so that the positions of the critical points for these models can be determined exactly from solutions for strips of finite width. It is also found that for the two-dimensional Ising model the scaling finite-size equation for the derivative of the inverse correlation length with respect to temperature gives the exact value of the thermal critical exponent.Comment: 14 pages with 1 figure in late

    Quantum Correlations in NMR systems

    Full text link
    In conventional NMR experiments, the Zeeman energy gaps of the nuclear spin ensembles are much lower than their thermal energies, and accordingly exhibit tiny polarizations. Generally such low-purity quantum states are devoid of quantum entanglement. However, there exist certain nonclassical correlations which can be observed even in such systems. In this chapter, we discuss three such quantum correlations, namely, quantum contextuality, Leggett-Garg temporal correlations, and quantum discord. In each case, we provide a brief theoretical background and then describe some results from NMR experiments.Comment: 21 pages, 7 figure
    corecore