203 research outputs found
--Dependence of the Gerasimov-Drell-Hearn Sum Rule
We test the Gerasimov-Drell-Hearn (GDH) sum rule numerically by calculating
the total photon absorption cross sections and on
the nucleon via photon excitation of baryon resonances in the constituent quark
model. A total of seventeen, low-lying, non-strange baryon resonances are
included in this calculation. The transverse and longitudinal interference
cross section, , is found to play an important role in the
study of the variation of the sum rule. The results show that the GDH sum
rule is saturated by these resonances at a confidence level of 94%. In
particular, the excitation largely saturates the sum rule at
, and dominates at small . The GDH integral has a strong
-dependence below and changes its sign around . It becomes weakly -dependent for because of
the quick decline of the resonance contributions. We point out that the
variation of the GDH sum rule is very important for understanding the nucleon
spin structure in the non-perturbative QCD region.Comment: revtex, 17 pages, 3 ps figs include
Maternal age effect and severe germ-line bottleneck in the inheritance of human mitochondrial DNA
The manifestation of mitochondrial DNA (mtDNA) diseases depends on the frequency of heteroplasmy (the presence of several alleles in an individual), yet its transmission across generations cannot be readily predicted owing to a lack of data on the size of the mtDNA bottleneck during oogenesis. For deleterious heteroplasmies, a severe bottleneck may abruptly transform a benign (low) frequency in a mother into a disease-causing (high) frequency in her child. Here we present a high-resolution study of heteroplasmy transmission conducted on blood and buccal mtDNA of 39 healthy mother–child pairs of European ancestry (a total of 156 samples, each sequenced at ∼20,000× per site). On average, each individual carried one heteroplasmy, and one in eight individuals carried a disease-associated heteroplasmy, with minor allele frequency ≥1%. We observed frequent drastic heteroplasmy frequency shifts between generations and estimated the effective size of the germ-line mtDNA bottleneck at only ∼30–35 (interquartile range from 9 to 141). Accounting for heteroplasmies, we estimated the mtDNA germ-line mutation rate at 1.3 × 10−8 (interquartile range from 4.2 × 10−9 to 4.1 × 10−8) mutations per site per year, an order of magnitude higher than for nuclear DNA. Notably, we found a positive association between the number of heteroplasmies in a child and maternal age at fertilization, likely attributable to oocyte aging. This study also took advantage of droplet digital PCR (ddPCR) to validate heteroplasmies and confirm a de novo mutation. Our results can be used to predict the transmission of disease-causing mtDNA variants and illuminate evolutionary dynamics of the mitochondrial genome
Photo-production of Nucleon Resonances and Nucleon Spin Structure Function in the Resonance Region
The photo-production of nucleon resonances is calculated based on a chiral
constituent quark model including both relativistic corrections H{rel} and
two-body exchange currents, and it is shown that these effects play an
important role. We also calculate the first moment of the nucleon spin
structure function g1 (x,Q^2) in the resonance region, and obtain a
sign-changing point around Q^2 ~ 0.27 {GeV}^2 for the proton.Comment: 23 pages, 5 figure
Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment
BACKGROUND: Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. METHODS: OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. RESULTS: Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. CONCLUSIONS: Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several antigens when developing vaccine strategies for cancer
A side-by-side comparison of Daya Bay antineutrino detectors
The Daya Bay Reactor Neutrino Experiment is designed to determine precisely
the neutrino mixing angle with a sensitivity better than 0.01 in
the parameter sin at the 90% confidence level. To achieve this
goal, the collaboration will build eight functionally identical antineutrino
detectors. The first two detectors have been constructed, installed and
commissioned in Experimental Hall 1, with steady data-taking beginning
September 23, 2011. A comparison of the data collected over the subsequent
three months indicates that the detectors are functionally identical, and that
detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay
The Daya Bay experiment has observed correlations between reactor core fuel
evolution and changes in the reactor antineutrino flux and energy spectrum.
Four antineutrino detectors in two experimental halls were used to identify 2.2
million inverse beta decays (IBDs) over 1230 days spanning multiple fuel cycles
for each of six 2.9 GW reactor cores at the Daya Bay and Ling
Ao nuclear power plants. Using detector data spanning effective Pu
fission fractions, , from 0.25 to 0.35, Daya Bay measures an average
IBD yield, , of
cm/fission and a fuel-dependent variation in the IBD yield,
, of cm/fission.
This observation rejects the hypothesis of a constant antineutrino flux as a
function of the Pu fission fraction at 10 standard deviations. The
variation in IBD yield was found to be energy-dependent, rejecting the
hypothesis of a constant antineutrino energy spectrum at 5.1 standard
deviations. While measurements of the evolution in the IBD spectrum show
general agreement with predictions from recent reactor models, the measured
evolution in total IBD yield disagrees with recent predictions at 3.1.
This discrepancy indicates that an overall deficit in measured flux with
respect to predictions does not result from equal fractional deficits from the
primary fission isotopes U, Pu, U, and Pu.
Based on measured IBD yield variations, yields of and cm/fission have been determined for the two
dominant fission parent isotopes U and Pu. A 7.8% discrepancy
between the observed and predicted U yield suggests that this isotope
may be the primary contributor to the reactor antineutrino anomaly.Comment: 7 pages, 5 figure
- …