259 research outputs found

    Histopathological changes in the human larynx following expanded polytetrafluroethylene (Gore-Tex(®)) implantation

    Get PDF
    BACKGROUND: Expanded polytetrafluroethelyne (e PTFE, Gore-Tex(®)) has been advocated as an implant material for medialization of the vocal fold. Animal studies involving rabbits and a porcine model have demonstrated host tolerance of the implant. There have been no reports describing the histological changes in a human laryngectomy specimen with a Gore-Tex implant. CASE PRESENTATION: The histological findings in a laryngectomy specimen of a patient previously implanted with e PTFE for medialization of a paralyzed vocal fold following excision of a vagal neurofibroma were studied. Histopathology revealed a mild foreign-body giant cell granulomatous reaction with some associated fibrosis. The granulomatous response was limited to the periphery of the Gore-Tex and although it closely followed the profile of the material it did not encroach into or significantly break up the material. There was no significant neutrophilic or lymphocytic inflammation. CONCLUSIONS: Our findings are consistent with the animal models confirming that Gore-Tex implantation does not result in a significant granulomatous reaction in the human larynx over a 13-month period. Moreover, there is no evidence of resorption or infection. Further, the lack of lymphocytes in association with the granulomas indicates that there is no significant immunological hypersensitivity. Histologically, the slight permeation by connective tissue is similar to that seen in Gore-Tex vascular and cardiac implants. The degree of the slight giant cell response appears to be dependent on the profile of the material; a sharp edge incited more of a response than a flat surface

    A Critical Tryptophan and Ca2+ in Activation and Catalysis of TPPI, the Enzyme Deficient in Classic Late-Infantile Neuronal Ceroid Lipofuscinosis

    Get PDF
    Tripeptidyl aminopeptidase I (TPPI) is a crucial lysosomal enzyme that is deficient in the fatal neurodegenerative disorder called classic late-infantile neuronal ceroid lipofuscinosis (LINCL). It is involved in the catabolism of proteins in the lysosomes. Recent X-ray crystallographic studies have provided insights into the structural/functional aspects of TPPI catalysis, and indicated presence of an octahedrally coordinated Ca(2+).Purified precursor and mature TPPI were used to study inhibition by NBS and EDTA using biochemical and immunological approaches. Site-directed mutagenesis with confocal imaging technique identified a critical W residue in TPPI activity, and the processing of precursor into mature enzyme.NBS is a potent inhibitor of the purified TPPI. In mammalian TPPI, W542 is critical for tripeptidyl peptidase activity as well as autocatalysis. Transfection studies have indicated that mutants of the TPPI that harbor residues other than W at position 542 have delayed processing, and are retained in the ER rather than transported to lysosomes. EDTA inhibits the autocatalytic processing of the precursor TPPI.We propose that W542 and Ca(2+) are critical for maintaining the proper tertiary structure of the precursor proprotein as well as the mature TPPI. Additionally, Ca(2+) is necessary for the autocatalytic processing of the precursor protein into the mature TPPI. We have identified NBS as a potent TPPI inhibitor, which led in delineating a critical role for W542 residue. Studies with such compounds will prove valuable in identifying the critical residues in the TPPI catalysis and its structure-function analysis

    Biomechanical coupling facilitates spinal neural tube closure in mouse embryos

    Get PDF
    Neural tube (NT) formation in the spinal region of the mammalian embryo involves a wave of “zippering” that passes down the elongating spinal axis, uniting the neural fold tips in the dorsal midline. Failure of this closure process leads to open spina bifida, a common cause of severe neurologic disability in humans. Here, we combined a tissue-level strain-mapping workflow with laser ablation of live-imaged mouse embryos to investigate the biomechanics of mammalian spinal closure. Ablation of the zippering point at the embryonic dorsal midline causes far-reaching, rapid separation of the elevating neural folds. Strain analysis revealed tissue expansion around the zippering point after ablation, but predominant tissue constriction in the caudal and ventral neural plate zone. This zone is biomechanically coupled to the zippering point by a supracellular F-actin network, which includes an actin cable running along the neural fold tips. Pharmacologic inhibition of F-actin or laser ablation of the cable causes neural fold separation. At the most advanced somite stages, when completion of spinal closure is imminent, the cable forms a continuous ring around the neuropore, and simultaneously, a new caudal-to-rostral zippering point arises. Laser ablation of this new closure initiation point causes neural fold separation, demonstrating its biomechanical activity. Failure of spinal closure in pre-spina bifida Zic2Ku mutant embryos is associated with altered tissue biomechanics, as indicated by greater neuropore widening after ablation. Thus, this study identifies biomechanical coupling of the entire region of active spinal neurulation in the mouse embryo as a prerequisite for successful NT closure

    Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype

    Get PDF
    Batten diseases (BDs) are a group of lysosomal storage disorders characterized by seizure, visual loss, and cognitive and motor deterioration. We discovered increased levels of globotriaosylceramide (Gb3) in cellular and murine models of CLN3 and CLN7 diseases and used fluorescent-conjugated bacterial toxins to label Gb3 to develop a cell-based high content imaging (HCI) screening assay for the repurposing of FDA-approved compounds able to reduce this accumulation within BD cells. We found that tamoxifen reduced the lysosomal accumulation of Gb3 in CLN3 and CLN7 cell models, including neuronal progenitor cells (NPCs) from CLN7 patient-derived induced pluripotent stem cells (iPSC). Here, tamoxifen exerts its action through a mechanism that involves activation of the transcription factor EB (TFEB), a master gene of lysosomal function and autophagy. In vivo administration of tamoxifen to the CLN7Δex2 mouse model reduced the accumulation of Gb3 and SCMAS, decreased neuroinflammation, and improved motor coordination. These data strongly suggest that tamoxifen may be a suitable drug to treat some types of Batten disease

    Study protocol: HepaT1ca - an observational clinical cohort study to quantify liver health in surgical candidates for liver malignancies.

    Get PDF
    Background Accurate assessment of liver health prior to undertaking resectional liver surgery or chemoembolisation for primary and secondary cancers is essential for patient safety and optimal outcomes. LiverMultiScan™, an MRI-based technology, non-invasively quantifies hepatic fibroinflammatory disease, steatosis and iron content. We hypothesise that LiverMultiScan™can quantify liver health prior to surgery and inform the risk assessment for patients considering liver surgery or chemoembolization and seek to evaluate this technology in an operational environment. Methods/Design HepaT1ca is an observational cohort study in two tertiary-referral liver surgery centres in the United Kingdom. The primary outcome is correlation between the pre-operative liver health assessment score (Hepatica score - calculated by weighting future remnant liver volume by liver inflammation and fibrosis (LIF) score) and the post-operative liver function composite integer-based risk (Hyder-Pawlik) score. With ethical approval and fully-informed consent, individuals considering liver surgery for primary or secondary cancer will undergo clinical assessment, blood sampling, and LiverMultiScan™multiparametric MRI before and after surgical liver resection or TACE. In nested cohorts of individuals undergoing chemotherapy prior to surgery, or those undergoing portal vein embolization (PVE) as an adjunct to surgery, an additional testing session prior to commencement of treatment will occur. Tissue will be examined histologically and by immunohistochemistry. Pre-operative liver health assessment scores and the post-operative risk scores will be correlated to define the ability of LiverMultiScan™to predict the risk of post-operative morbidity and mortality. Because technology performance in this setting is unknown, a pragmatic sample size will be used. For the primary outcome, n = 200 for the main cohort will allow detection of a minimum correlation coefficient of 0.2 with 5% significance and power of 80%. Discussion This study will refine the technology and clinical application of multiparametric MRI (including LiverMultiScan™), to quantify pre-existing liver health and predict post-intervention outcomes following liver resection. If successful, this study will advance the technology and support the use of multiparametric MRI as part of an enhanced pre-operative assessment to improve patient safety and to personalise operative risk assessment of liver surgery/non-surgical intervention

    Distinct Early Molecular Responses to Mutations Causing vLINCL and JNCL Presage ATP Synthase Subunit C Accumulation in Cerebellar Cells

    Get PDF
    Variant late-infantile neuronal ceroid lipofuscinosis (vLINCL), caused by CLN6 mutation, and juvenile neuronal ceroid lipofuscinosis (JNCL), caused by CLN3 mutation, share clinical and pathological features, including lysosomal accumulation of mitochondrial ATP synthase subunit c, but the unrelated CLN6 and CLN3 genes may initiate disease via similar or distinct cellular processes. To gain insight into the NCL pathways, we established murine wild-type and CbCln6nclf/nclf cerebellar cells and compared them to wild-type and CbCln3Δex7/8/Δex7/8 cerebellar cells. CbCln6nclf/nclf cells and CbCln3Δex7/8/Δex7/8 cells both displayed abnormally elongated mitochondria and reduced cellular ATP levels and, as cells aged to confluence, exhibited accumulation of subunit c protein in Lamp 1-positive organelles. However, at sub-confluence, endoplasmic reticulum PDI immunostain was decreased only in CbCln6nclf/nclf cells, while fluid-phase endocytosis and LysoTracker® labeled vesicles were decreased in both CbCln6nclf/nclf and CbCln3Δex7/8/Δex7/8 cells, though only the latter cells exhibited abnormal vesicle subcellular distribution. Furthermore, unbiased gene expression analyses revealed only partial overlap in the cerebellar cell genes and pathways that were altered by the Cln3Δex7/8 and Cln6nclf mutations. Thus, these data support the hypothesis that CLN6 and CLN3 mutations trigger distinct processes that converge on a shared pathway, which is responsible for proper subunit c protein turnover and neuronal cell survival

    Glucose utilization via glycogen phosphorylase sustains proliferation and prevents premature senescence in cancer cells.

    Get PDF
    Metabolic reprogramming of cancer cells provides energy and multiple intermediates critical for cell growth. Hypoxia in tumors represents a hostile environment that can encourage these transformations. We report that glycogen metabolism is upregulated in tumors in vivo and in cancer cells in vitro in response to hypoxia. In vitro, hypoxia induced an early accumulation of glycogen, followed by a gradual decline. Concordantly, glycogen synthase (GYS1) showed a rapid induction, followed by a later increase of glycogen phosphorylase (PYGL). PYGL depletion and the consequent glycogen accumulation led to increased reactive oxygen species (ROS) levels that contributed to a p53-dependent induction of senescence and markedly impaired tumorigenesis in vivo. Metabolic analyses indicated that glycogen degradation by PYGL is important for the optimal function of the pentose phosphate pathway. Thus, glycogen metabolism is a key pathway induced by hypoxia, necessary for optimal glucose utilization, which represents a targetable mechanism of metabolic adaptation

    Can herpes simplex virus type 2 suppression slow HIV disease progression: a study protocol for the VALacyclovir In Delaying Antiretroviral Treatment Entry (VALIDATE) trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although highly active antiretroviral therapy (HAART) has dramatically decreased HIV-related morbidity and mortality, the associated costs, toxicities, and resistance risks make the potential delay of HAART initiation an attractive goal. Suppression of herpes simplex virus type 2 (HSV-2) may be a novel strategy for achieving this goal because HSV-2 is associated with clinically significant increases in HIV viral load, the primary driver of HIV disease progression.</p> <p>Methods/Design</p> <p>The VALacyclovir In Delaying Antiretroviral Treatment Entry (VALIDATE) trial is a multicentre, randomized, fully blinded, clinical trial of twice daily valacyclovir 500 mg versus placebo for delaying the need for initiating HAART among HIV-1, HSV-2 co-infected HAART-naïve adults. 480 participants from Canada, Brazil and Argentina will undergo quarterly clinical follow-up until reaching the composite primary endpoint of having a CD4+ T-cell count ≤ 350 cells/mm<sup>3 </sup>or initiation of HAART for any reason, whichever occurs first. The primary analysis will use a proportional hazards model, stratified by site, to estimate the relative risk of progression to this endpoint associated with valacyclovir. Secondary analyses will compare the rates of change in CD4 count, median log<sub>10 </sub>HIV viral load, drug-related adverse events, frequency of HSV reactivations, rate of acyclovir-resistant HSV, and quality of life between study arms.</p> <p>Discussion</p> <p>Although HIV treatment guidelines continue to evolve, with some authorities recommending earlier HAART among asymptomatic individuals, the potential delay of HAART remains a clinically relevant goal for many. If shown to be of benefit, implementation of the VALIDATE intervention will require careful consideration of both individual patient-level and public health implications.</p> <p>Trial Registration</p> <p>Current Controlled Trials ISRCTN66756285</p> <p>ClinicalTrials.gov NCT00860977</p
    corecore