83 research outputs found
Theory of differential inclusions and its application in mechanics
The following chapter deals with systems of differential equations with
discontinuous right-hand sides. The key question is how to define the solutions
of such systems. The most adequate approach is to treat discontinuous systems
as systems with multivalued right-hand sides (differential inclusions). In this
work three well-known definitions of solution of discontinuous system are
considered. We will demonstrate the difference between these definitions and
their application to different mechanical problems. Mathematical models of
drilling systems with discontinuous friction torque characteristics are
considered. Here, opposite to classical Coulomb symmetric friction law, the
friction torque characteristic is asymmetrical. Problem of sudden load change
is studied. Analytical methods of investigation of systems with such
asymmetrical friction based on the use of Lyapunov functions are demonstrated.
The Watt governor and Chua system are considered to show different aspects of
computer modeling of discontinuous systems
Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters
Summary The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of wholegenome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs.</jats:p
Hidden attractors in fundamental problems and engineering models
Recently a concept of self-excited and hidden attractors was suggested: an
attractor is called a self-excited attractor if its basin of attraction
overlaps with neighborhood of an equilibrium, otherwise it is called a hidden
attractor. For example, hidden attractors are attractors in systems with no
equilibria or with only one stable equilibrium (a special case of
multistability and coexistence of attractors). While coexisting self-excited
attractors can be found using the standard computational procedure, there is no
standard way of predicting the existence or coexistence of hidden attractors in
a system. In this plenary survey lecture the concept of self-excited and hidden
attractors is discussed, and various corresponding examples of self-excited and
hidden attractors are considered
Антиоксидантная активность и химический состав экстрактов ксилотрофных грибов Среднего Урала, произрастающих на березе
The search for new natural sources of biologically active substances is a major issue in pharmaceutical industry. Xylotrophic basidiomycetes are common in forests worldwide, but as a prospective raw source of biologically active compounds they have not been studied as extensively as plants and other groups of fungi. The study is aimed to determine the chemical composition and antioxidant activity of extracts from 10 species of tinder fungi growing on birch and common in the forests in Russia. The chaga muchroom (Inonotus obliquus), traditionally used in medicine, was chosen as a standard species. Extracts from fruiting bodies were obtained with water or 95 % ethanol. They contained 4 to 8 types of free amino acids including 2 to 6 essential ones. Perennial basidiocarps were shown to be richer in phenolic compounds and poorer in amino acids than annual ones. Alkaloids and saponins were found in perennial basidiocarps of two species, saponins were also found in annual basidiocarps of one species. Water and alcohol extracts differed in composition and concentration of extractives, and showed different antioxidant (inhibition of lipid peroxidation) and antiradical (ABTS-test, inhibition of NO production) activity. This way it was shown that the nature of the solvent extraction agent is important for the manifestation of biological activity. In most tests, water extracts from chaga showed better antioxidant properties; extracts from Piptoporus betulinus and Fomitopsis pinicola were also effective as antioxidants, which may be promising avenues for future research. © Siberian Federal University. All rights reserved.Acknowledgements. The work was supported by the Ministry of Science and Higher Education of the Russian Federation, Project No. FEUZ-2021–0014
Towards reconciling structure and function in the nuclear pore complex
The spatial separation between the cytoplasm and the cell nucleus necessitates the continuous exchange of macromolecular cargo across the double-membraned nuclear envelope. Being the only passageway in and out of the nucleus, the nuclear pore complex (NPC) has the principal function of regulating the high throughput of nucleocytoplasmic transport in a highly selective manner so as to maintain cellular order and function. Here, we present a retrospective review of the evidence that has led to the current understanding of both NPC structure and function. Looking towards the future, we contemplate on how various outstanding effects and nanoscopic characteristics ought to be addressed, with the goal of reconciling structure and function into a single unified picture of the NPC
Prospective Observational Study on acute Appendicitis Worldwide (POSAW)
Acute appendicitis (AA) is the most common surgical disease, and appendectomy is the treatment of choice in the majority of cases. A correct diagnosis is key for decreasing the negative appendectomy rate. The management can become difficult in case of complicated appendicitis. The aim of this study is to describe the worldwide clinical and diagnostic work-up and management of AA in surgical departments.info:eu-repo/semantics/publishedVersio
Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters
The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of wholegenome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs
- …