1,846 research outputs found

    I-HAZE: a dehazing benchmark with real hazy and haze-free indoor images

    Full text link
    Image dehazing has become an important computational imaging topic in the recent years. However, due to the lack of ground truth images, the comparison of dehazing methods is not straightforward, nor objective. To overcome this issue we introduce a new dataset -named I-HAZE- that contains 35 image pairs of hazy and corresponding haze-free (ground-truth) indoor images. Different from most of the existing dehazing databases, hazy images have been generated using real haze produced by a professional haze machine. For easy color calibration and improved assessment of dehazing algorithms, each scene include a MacBeth color checker. Moreover, since the images are captured in a controlled environment, both haze-free and hazy images are captured under the same illumination conditions. This represents an important advantage of the I-HAZE dataset that allows us to objectively compare the existing image dehazing techniques using traditional image quality metrics such as PSNR and SSIM

    Lay perceptions of predictive testing for diabetes based on DNA test results versus family history assessment: a focus group study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study assessed lay perceptions of issues related to predictive genetic testing for multifactorial diseases. These perceived issues may differ from the "classic" issues, e.g. autonomy, discrimination, and psychological harm that are considered important in predictive testing for monogenic disorders. In this study, type 2 diabetes was used as an example, and perceptions with regard to predictive testing based on DNA test results and family history assessment were compared.</p> <p>Methods</p> <p>Eight focus group interviews were held with 45 individuals aged 35-70 years with (n = 3) and without (n = 1) a family history of diabetes, mixed groups of these two (n = 2), and diabetes patients (n = 2). All interviews were transcribed and analysed using Atlas-ti.</p> <p>Results</p> <p>Most participants believed in the ability of a predictive test to identify people at risk for diabetes and to motivate preventive behaviour. Different reasons underlying motivation were considered when comparing DNA test results and a family history risk assessment. A perceived drawback of DNA testing was that diabetes was considered not severe enough for this type of risk assessment. In addition, diabetes family history assessment was not considered useful by some participants, since there are also other risk factors involved, not everyone has a diabetes family history or knows their family history, and it might have a negative influence on family relations. Respect for autonomy of individuals was emphasized more with regard to DNA testing than family history assessment. Other issues such as psychological harm, discrimination, and privacy were only briefly mentioned for both tests.</p> <p>Conclusion</p> <p>The results suggest that most participants believe a predictive genetic test could be used in the prevention of multifactorial disorders, such as diabetes, but indicate points to consider before both these tests are applied. These considerations differ with regard to the method of assessment (DNA test or obtaining family history) and also differ from monogenic disorders.</p

    The histone deacetylase inhibitor trichostatin A downregulates human MDR1 (ABCB1) gene expression by a transcription-dependent mechanism in a drug-resistant small cell lung carcinoma cell line model

    Get PDF
    Tumour drug-resistant ABCB1 gene expression is regulated at the chromatin level through epigenetic mechanisms. We examined the effects of the histone deacetylase inhibitor trichostatin A (TSA) on ABCB1 gene expression in small cell lung carcinoma (SCLC) drug-sensitive (H69WT) or etoposide-resistant (H69VP) cells. We found that TSA induced an increase in ABCB1 expression in drug-sensitive cells, but strongly decreased it in drug-resistant cells. These up- and downregulations occurred at the transcriptional level. Protein synthesis inhibition reduced these modulations, but did not completely suppress them. Differential temporal patterns of histone acetylation were observed at the ABCB1 promoter: increase in H4 acetylation in both cell lines, but different H3 acetylation with a progressive increase in H69WT cells but a transient one in H69VP cells. ABCB1 regulations were not related with the methylation status of the promoter −50GC, −110GC, and Inr sites, and did not result in further changes to these methylation profiles. Trichostatin A treatment did not modify MBD1 binding to the ABCB1 promoter and similarly increased PCAF binding in both H69 cell lines. Our results suggest that in H69 drug-resistant SCLC cell line TSA induces downregulation of ABCB1 expression through a transcriptional mechanism, independently of promoter methylation, and MBD1 or PCAF recruitment

    Facilitated Monocyte-Macrophage Uptake and Tissue Distribution of Superparmagnetic Iron-Oxide Nanoparticles

    Get PDF
    BACKGROUND: We posit that the same mononuclear phagocytes (MP) that serve as target cells and vehicles for a host of microbial infections can be used to improve diagnostics and drug delivery. We also theorize that physical and biological processes such as particle shape, size, coating and opsonization that affect MP clearance of debris and microbes can be harnessed to facilitate uptake of nanoparticles (NP) and tissue delivery. METHODS: Monocytes and monocyte-derived macrophages (MDM) were used as vehicles of superparamagnetic iron oxide (SPIO) NP and immunoglobulin (IgG) or albumin coated SPIO for studies of uptake and distribution. IgG coated SPIO was synthesized by covalent linkage and uptake into monocytes and MDM investigated related to size, time, temperature, concentration, and coatings. SPIO and IgG SPIO were infused intravenously into naïve mice. T(2) measures using magnetic resonance imaging (MRI) were used to monitor tissue distribution in animals. RESULTS: Oxidation of dextran on the SPIO surface generated reactive aldehyde groups and permitted covalent linkage to amino groups of murine and human IgG and F(ab')(2) fragments and for Alexa Fluor(R) 488 hydroxylamine to form a Schiff base. This labile intermediate was immediately reduced with sodium cyanoborohydride in order to stabilize the NP conjugate. Optical density measurements of the oxidized IgG, F(ab')(2), and/or Alexa Fluor(R) 488 SPIO demonstrated approximately 50% coupling yield. IgG-SPIO was found stable at 4 degrees C for a period of 1 month during which size and polydispersity index varied little from 175 nm and 200 nm, respectively. In vitro, NP accumulated readily within monocyte and MDM cytoplasm after IgG-SPIO exposure; whereas, the uptake of native SPIO in monocytes and MDM was 10-fold less. No changes in cell viability were noted for the SPIO-containing monocytes and MDM. Cell morphology was not changed as observed by transmission electron microscopy. Compared to unconjugated SPIO, intravenous injection of IgG-SPIO afforded enhanced and sustained lymphoid tissue distribution over 24 hours as demonstrated by MRI. CONCLUSIONS: Facilitated uptake of coated SPIO in monocytes and MDM was achieved. Uptake was linked to particle size and was time and concentration dependent. The ability of SPIO to be rapidly taken up and distributed into lymphoid tissues also demonstrates feasibility of macrophage-targeted nanoformulations for diagnostic and drug therapy

    Burden of rotavirus gastroenteritis in the Middle Eastern and North African pediatric population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rotavirus gastroenteritis (RVGE) is the most common cause of severe childhood diarrhea worldwide. Objectives were to estimate the burden of RVGE among children less than five years old in the Middle East (Bahrain, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, UAE, Yemen), North Africa (Algeria, Egypt, Libya, Morocco, Tunisia) and Turkey.</p> <p>Methods</p> <p>A comprehensive literature search was conducted in major databases on the epidemiology and burden of rotavirus among children less than five years old between 1999 and 2009. Data from each country was extracted and compared.</p> <p>Results</p> <p>The search identified 43 studies. RVGE was identified in 16-61% of all cases of acute gastroenteritis, with a peak in the winter. RVGE-related hospitalization rates ranged from 14% to 45%, compared to 14%-28% for non-RVGE. Annually, RVGE caused up to 112 fatalities per 100,000 in certain countries in the region. Hospitalization costs ranged from 1.8to1.8 to 4.6 million annually, depending on the country. The most recent literature available showed that G1P[8] was the most prevalent genotype combination in 8 countries (range 23%-56%). G2P[4] was most prevalent in 4 countries (26%-48%). G9P[8] and G4P[8] were also frequently detected.</p> <p>Conclusions</p> <p>RVGE is a common disease associated with significant morbidity, mortality, and economic burden. Given the variety and diverse rotavirus types in the region, use of a vaccine with broad and consistent serotype coverage would be important to help decrease the burden of RVGE in the Middle East and North Africa.</p

    Antibodies Targeted to the Brain with Image-Guided Focused Ultrasound Reduces Amyloid-β Plaque Load in the TgCRND8 Mouse Model of Alzheimer's Disease

    Get PDF
    Immunotherapy for Alzheimer's disease (AD) relies on antibodies directed against toxic amyloid-beta peptide (Aβ), which circulate in the bloodstream and remove Aβ from the brain [1], [2]. In mouse models of AD, the administration of anti-Aβ antibodies directly into the brain, in comparison to the bloodstream, was shown to be more efficient at reducing Aβ plaque pathology [3], [4]. Therefore, delivering anti-Aβ antibodies to the brain of AD patients may also improve treatment efficiency. Transcranial focused ultrasound (FUS) is known to transiently-enhance the permeability of the blood-brain barrier (BBB) [5], allowing intravenously administered therapeutics to enter the brain [6]–[8]. Our goal was to establish that anti-Aβ antibodies delivered to the brain using magnetic resonance imaging-guided FUS (MRIgFUS) [9] can reduce plaque pathology. To test this, TgCRND8 mice [10] received intravenous injections of MRI and FUS contrast agents, as well as anti-Aβ antibody, BAM-10. MRIgFUS was then applied transcranially. Within minutes, the MRI contrast agent entered the brain, and BAM-10 was later found bound to Aβ plaques in targeted cortical areas. Four days post-treatment, Aβ pathology was significantly reduced in TgCRND8 mice. In conclusion, this is the first report to demonstrate that MRIgFUS delivery of anti-Aβ antibodies provides the combined advantages of using a low dose of antibody and rapidly reducing plaque pathology

    Personalized medicine: new genomics, old lessons

    Get PDF
    Personalized medicine uses traditional, as well as emerging concepts of the genetic and environmental basis of disease to individualize prevention, diagnosis and treatment. Personalized genomics plays a vital, but not exclusive role in this evolving model of personalized medicine. The distinctions between genetic and genomic medicine are more quantitative than qualitative. Personalized genomics builds on principles established by the integration of genetics into medical practice. Principles shared by genetic and genomic aspects of medicine, include the use of variants as markers for diagnosis, prognosis, prevention, as well as targets for treatment, the use of clinically validated variants that may not be functionally characterized, the segregation of these variants in non-Mendelian as well as Mendelian patterns, the role of gene–environment interactions, the dependence on evidence for clinical utility, the critical translational role of behavioral science, and common ethical considerations. During the current period of transition from investigation to practice, consumers should be protected from harms of premature translation of research findings, while encouraging the innovative and cost-effective application of those genomic discoveries that improve personalized medical care

    OAS1 Polymorphisms Are Associated with Susceptibility to West Nile Encephalitis in Horses

    Get PDF
    West Nile virus, first identified within the United States in 1999, has since spread across the continental states and infected birds, humans and domestic animals, resulting in numerous deaths. Previous studies in mice identified the Oas1b gene, a member of the OAS/RNASEL innate immune system, as a determining factor for resistance to West Nile virus (WNV) infection. A recent case-control association study described mutations of human OAS1 associated with clinical susceptibility to WNV infection. Similar studies in horses, a particularly susceptible species, have been lacking, in part, because of the difficulty in collecting populations sufficiently homogenous in their infection and disease states. The equine OAS gene cluster most closely resembles the human cluster, with single copies of OAS1, OAS3 and OAS2 in the same orientation. With naturally occurring susceptible and resistant sub-populations to lethal West Nile encephalitis, we undertook a case-control association study to investigate whether, similar to humans (OAS1) and mice (Oas1b), equine OAS1 plays a role in resistance to severe WNV infection. We identified naturally occurring single nucleotide mutations in equine (Equus caballus) OAS1 and RNASEL genes and, using Fisher's Exact test, we provide evidence that mutations in equine OAS1 contribute to host susceptibility. Virtually all of the associated OAS1 polymorphisms were located within the interferon-inducible promoter, suggesting that differences in OAS1 gene expression may determine the host's ability to resist clinical manifestations associated with WNV infection

    Mitochondrial Membrane Potential in Human Neutrophils Is Maintained by Complex III Activity in the Absence of Supercomplex Organisation

    Get PDF
    textabstractBackground: Neutrophils depend mainly on glycolysis for their enegry provision. Their mitochondria maintain a membrace potential (ΔΨm), which is usually generated by the repiratory chain complexes. We investigated the source of ΔΨm in neutrophils, as compared to peripheral blood mononuclear leukocytes and HL-60 cells, and whether neutrophils can still utilise this ΔΨm for the generation of ATP. Methods and Principal Findings: Individual activity of the oxidative phosphorylation complexes was significantly reduced in neutrophils, except for complex II and V, but ΔΨm was still decreased byinhibition of complex III, confirming the role of the respiratory chain in maintaining ΔΨm. Complex V did not maintain ΔΨm by consumption of ATP, as has previously been suggested for eosinophils shuttle. Furthermore, respiratory supercomplexes, which contribute to efficient coupling of the respiratory chain to ATP synthesis, were ladding in neutrophil mitochondria. When HL-60 cells were differentiated to neutrophil-like cells, they lost mitochondrial supercimplex organisation while gaining increased aerobic glycolysis, just like neutrophils. Conclusions: We show that neutrophils can maintain ΔΨm via the glycerol-3-phosphate shuttle, wereby their mitochondria play an important role in the regulation of aerobic glycolysis, rather than producing energy themselves. This peculiar mitochondrial phenotype is acquired during differentiation from myeloid precursors
    corecore