2,820 research outputs found

    Adjacent Slice Feature Guided 2.5D Network for Pulmonary Nodule Segmentation

    Full text link
    More and more attention has been paid to the segmentation of pulmonary nodules. Among the current methods based on deep learning, 3D segmentation methods directly input 3D images, which takes up a lot of memory and brings huge computation. However, most of the 2D segmentation methods with less parameters and calculation have the problem of lacking spatial relations between slices, resulting in poor segmentation performance. In order to solve these problems, we propose an adjacent slice feature guided 2.5D network. In this paper, we design an adjacent slice feature fusion model to introduce information from adjacent slices. To further improve the model performance, we construct a multi-scale fusion module to capture more context information, in addition, we design an edge-constrained loss function to optimize the segmentation results in the edge region. Fully experiments show that our method performs better than other existing methods in pulmonary nodule segmentation task

    Analysis of Speech Separation Performance Degradation on Emotional Speech Mixtures

    Full text link
    Despite recent strides made in Speech Separation, most models are trained on datasets with neutral emotions. Emotional speech has been known to degrade performance of models in a variety of speech tasks, which reduces the effectiveness of these models when deployed in real-world scenarios. In this paper we perform analysis to differentiate the performance degradation arising from the emotions in speech from the impact of out-of-domain inference. This is measured using a carefully designed test dataset, Emo2Mix, consisting of balanced data across all emotional combinations. We show that even models with strong out-of-domain performance such as Sepformer can still suffer significant degradation of up to 5.1 dB SI-SDRi on mixtures with strong emotions. This demonstrates the importance of accounting for emotions in real-world speech separation applications.Comment: Accepted by APSIPA ASC 202

    Chinese Named Entity Recognition Method for Domain-Specific Text

    Get PDF
    The Chinese named entity recognition (NER) is a critical task in natural language processing, aiming at identifying and classifying named entities in text. However, the specificity of domain texts and the lack of large-scale labelled datasets have led to the poor performance of NER methods trained on public domain corpora on domain texts. In this paper, a named entity recognition method incorporating sentence semantic information is proposed, mainly by adaptively incorporating sentence semantic information into character semantic information through an attention mechanism and a gating mechanism to enhance entity feature representation while attenuating the noise generated by irrelevant character information. In addition, to address the lack of large-scale labelled samples, we used data self-augmentation methods to expand the training samples. Furthermore, we introduced a Weighted Strategy considering that the low-quality samples generated by the data self-augmentation process can have a negative impact on the model. Experiments on the TCM prescriptions corpus showed that the F1 values of our method outperformed the comparison methods

    Gain-gain and gain-lossless PT-symmetry broken from PT-phase diagram

    Full text link
    Parity-time (PT) symmetry and broken in micro/nano photonic structures have been investigated extensively as they bring new opportunities to control the flow of light based on non-Hermitian optics. Previous studies have focused on the situations of PT-symmetry broken in loss-loss or gain-loss coupling systems. Here, we theoretically predict the gain-gain and gain-lossless PT-broken from phase diagram, where the boundaries between PT-symmetry and PT-broken can be clearly defined in the full-parameter space including gain, lossless and loss. For specific micro/nano photonic structures, such as coupled waveguides, we give the transmission matrices of each phase space, which can be used for beam splitting. Taking coupled waveguides as an example, we obtain periodic energy exchange in PT-symmetry phase and exponential gain or loss in PT-broken phase, which are consistent with the phase diagram. The scenario giving a full view of PT-symmetry or broken, will not only deepen the understanding of fundamental physics, but also will promote the breakthrough of photonic applications like optical routers and beam splitters

    Visualizing the elongated vortices in γ\gamma-Ga nanostrips

    Get PDF
    We study the magnetic response of superconducting γ\gamma-Ga via low temperature scanning tunneling microscopy and spectroscopy. The magnetic vortex cores rely substantially on the Ga geometry, and exhibit an unexpectedly-large axial elongation with aspect ratio up to 40 in rectangular Ga nano-strips (width ll << 100 nm). This is in stark contrast with the isotropic circular vortex core in a larger round-shaped Ga island. We suggest that the unusual elongated vortices in Ga nanostrips originate from geometric confinement effect probably via the strong repulsive interaction between the vortices and Meissner screening currents at the sample edge. Our finding provides novel conceptual insights into the geometrical confinement effect on magnetic vortices and forms the basis for the technological applications of superconductors.Comment: published in Phys. Rev. B as a Rapid Communicatio
    corecore