478 research outputs found
Muon anomalous magnetic moment and the stabilized Randall-Sundrum scenario
We study the effects of extra dimension on the muon anomalous magnetic moment
in the stabilized Randall-Sundrum scenario. The effects of the Kaluza-Klein
states heavier than the cut-off scale expected to be of order are
neglected. Contribution from the spin-2 Kaluza-Klein states dominates over that
from the spin-0 radion. The recent BNL E821 results impose a strict constraint
on the parameter space of the model: TeV with
. Small is preferred if
is TeV scale.Comment: 9 pages, ReVTeX, reference added, version to appear in PL
Higgs friends and counterfeits at hadron colliders
We consider the possibility of "Higgs counterfeits" - scalars that can be
produced with cross sections comparable to the SM Higgs, and which decay with
identical relative observable branching ratios, but which are nonetheless not
responsible for electroweak symmetry breaking. We also consider a related
scenario involving "Higgs friends," fields similarly produced through gg fusion
processes, which would be discovered through diboson channels WW, ZZ, gamma
gamma, or even gamma Z, potentially with larger cross sections times branching
ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs
counterfeit, rather than directly pointing towards the origin of the weak
scale, would indicate the presence of new colored fields necessary for the
sizable production cross section (and possibly new colorless but electroweakly
charged states as well, in the case of the diboson decays of a Higgs friend).
These particles could easily be confused for an ordinary Higgs, perhaps with an
additional generation to explain the different cross section, and we emphasize
the importance of vector boson fusion as a channel to distinguish a Higgs
counterfeit from a true Higgs. Such fields would naturally be expected in
scenarios with "effective Z's," where heavy states charged under the SM produce
effective charges for SM fields under a new gauge force. We discuss the
prospects for discovery of Higgs counterfeits, Higgs friends, and associated
charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe
Assessment of long-range correlation in animal behaviour time series: the temporal pattern of locomotor activity of Japanese quail (Coturnix coturnix) and mosquito larva (Culex quinquefasciatus)
The aim of this study was to evaluate the performance of a classical method
of fractal analysis, Detrended Fluctuation Analysis (DFA), in the analysis of
the dynamics of animal behavior time series. In order to correctly use DFA to
assess the presence of long-range correlation, previous authors using
statistical model systems have stated that different aspects should be taken
into account such as: 1) the establishment by hypothesis testing of the absence
of short term correlation, 2) an accurate estimation of a straight line in the
log-log plot of the fluctuation function, 3) the elimination of artificial
crossovers in the fluctuation function, and 4) the length of the time series.
Taking into consideration these factors, herein we evaluated the presence of
long-range correlation in the temporal pattern of locomotor activity of
Japanese quail ({\sl Coturnix coturnix}) and mosquito larva ({\sl Culex
quinquefasciatus}). In our study, modeling the data with the general ARFIMA
model, we rejected the hypothesis of short range correlations (d=0) in all
cases. We also observed that DFA was able to distinguish between the artificial
crossover observed in the temporal pattern of locomotion of Japanese quail, and
the crossovers in the correlation behavior observed in mosquito larvae
locomotion. Although the test duration can slightly influence the parameter
estimation, no qualitative differences were observed between different test
durations
Revealing the electroweak properties of a new scalar resonance
One or more new heavy resonances may be discovered in experiments at the CERN
Large Hadron Collider. In order to determine if such a resonance is the
long-awaited Higgs boson, it is essential to pin down its spin, CP, and
electroweak quantum numbers. Here we describe how to determine what role a
newly-discovered neutral CP-even scalar plays in electroweak symmetry breaking,
by measuring its relative decay rates into pairs of electroweak vector bosons:
WW, ZZ, \gamma\gamma, and Z\gamma. With the data-driven assumption that
electroweak symmetry breaking respects a remnant custodial symmetry, we perform
a general analysis with operators up to dimension five. Remarkably, only three
pure cases and one nontrivial mixed case need to be disambiguated, which can
always be done if all four decay modes to electroweak vector bosons can be
observed or constrained. We exhibit interesting special cases of Higgs
look-alikes with nonstandard decay patterns, including a very suppressed
branching to WW or very enhanced branchings to \gamma\gamma and Z\gamma. Even
if two vector boson branching fractions conform to Standard Model expectations
for a Higgs doublet, measurements of the other two decay modes could unmask a
Higgs imposter.Comment: 23 pages, two figures; v2: minor revision and version to appear in
JHE
Strong coupling, discrete symmetry and flavour
We show how two principles - strong coupling and discrete symmetry - can work
together to generate the flavour structure of the Standard Model. We propose
that in the UV the full theory has a discrete flavour symmetry, typically only
associated with tribimaximal mixing in the neutrino sector. Hierarchies in the
particle masses and mixing matrices then emerge from multiple strongly coupled
sectors that break this symmetry. This allows for a realistic flavour
structure, even in models built around an underlying grand unified theory. We
use two different techniques to understand the strongly coupled physics:
confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both
approaches yield equivalent results and can be represented in a clear,
graphical way where the flavour symmetry is realised geometrically.Comment: 31 pages, 5 figures, updated references and figure
Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector
We investigate the detailed phenomenology of a light Abelian hidden sector in
the Randall-Sundrum framework. Relative to other works with light hidden
sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that
kinetically mix with the Standard Model photon and Z. We investigate the decay
properties of the hidden sector fields in some detail, and develop an approach
for calculating processes initiated on the ultraviolet brane of a warped space
with large injection momentum relative to the infrared scale. Using these
results, we determine the detailed bounds on the light warped hidden sector
from precision electroweak measurements and low-energy experiments. We find
viable regions of parameter space that lead to significant production rates for
several of the hidden Kaluza-Klein vectors in meson factories and fixed-target
experiments. This offers the possibility of exploring the structure of an extra
spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications,
results unchanged
The Two Faces of Anomaly Mediation
Anomaly mediation is a ubiquitous source of supersymmetry (SUSY) breaking
which appears in almost every theory of supergravity. In this paper, we show
that anomaly mediation really consists of two physically distinct phenomena,
which we dub "gravitino mediation" and "Kahler mediation". Gravitino mediation
arises from minimally uplifting SUSY anti-de Sitter (AdS) space to Minkowski
space, generating soft masses proportional to the gravitino mass. Kahler
mediation arises when visible sector fields have linear couplings to SUSY
breaking in the Kahler potential, generating soft masses proportional to beta
function coefficients. In the literature, these two phenomena are lumped
together under the name "anomaly mediation", but here we demonstrate that they
can be physically disentangled by measuring associated couplings to the
goldstino. In particular, we use the example of gaugino soft masses to show
that gravitino mediation generates soft masses without corresponding goldstino
couplings. This result naively violates the goldstino equivalence theorem but
is in fact necessary for supercurrent conservation in AdS space. Since
gravitino mediation persists even when the visible sector is sequestered from
SUSY breaking, we can use the absence of goldstino couplings as an unambiguous
definition of sequestering.Comment: 21 pages, 1 table; v2, references added, extended discussion in
introduction and appendix; v3, JHEP versio
Suppressing Electroweak Precision Observables in 5D Warped Models
We elaborate on a recently proposed mechanism to suppress large contributions
to the electroweak precision observables in five dimensional (5D) warped
models, without the need for an extended 5D gauge sector. The main ingredient
is a modification of the AdS metric in the vicinity of the infrared (IR) brane
corresponding to a strong deviation from conformality in the IR of the 4D
holographic dual. We compute the general low energy effective theory of the 5D
warped Standard Model, emphasizing additional IR contributions to the wave
function renormalization of the light Higgs mode. We also derive expressions
for the S and T parameters as a function of a generic 5D metric and zero-mode
wave functions. We give an approximate formula for the mass of the radion that
works even for strong deviation from the AdS background. We proceed to work out
the details of an explicit model and derive bounds for the first KK masses of
the various bulk fields. The radion is the lightest new particle although its
mass is already at about 1/3 of the mass of the lightest resonances, the KK
states of the gauge bosons. We examine carefully various issues that can arise
for extreme choices of parameters such as the possible reintroduction of the
hierarchy problem, the onset of nonperturbative physics due to strong IR
curvature or the creation of new hierarchies near the Planck scale. We conclude
that a KK scale of 1 TeV is compatible with all these constraints.Comment: 44 pages, 11 figures, references adde
An A4 flavor model for quarks and leptons in warped geometry
We propose a spontaneous A4 flavor symmetry breaking scheme implemented in a
warped extra dimensional setup to explain the observed pattern of quark and
lepton masses and mixings. The main advantages of this choice are the
explanation of fermion mass hierarchies by wave function overlaps, the
emergence of tribimaximal neutrino mixing and zero quark mixing at the leading
order and the absence of tree-level gauge mediated flavor violations. Quark
mixing is induced by the presence of bulk flavons, which allow for cross-brane
interactions and a cross-talk between the quark and neutrino sectors, realizing
the spontaneous symmetry breaking pattern A4 --> nothing first proposed in
[X.G.\,He, Y.Y.\,Keum, R.R.\,Volkas, JHEP{0604}, 039 (2006)]. We show that the
observed quark mixing pattern can be explained in a rather economical way,
including the CP violating phase, with leading order cross-interactions, while
the observed difference between the smallest CKM entries V_{ub} and V_{td} must
arise from higher order corrections. We briefly discuss bounds on the
Kaluza-Klein scale implied by flavor changing neutral current processes in our
model and show that the residual little CP problem is milder than in flavor
anarchic models.Comment: 34 pages, 2 figures; version published in JHE
The Custodial Randall-Sundrum Model: From Precision Tests to Higgs Physics
We reexamine the Randall-Sundrum (RS) model with enlarged gauge symmetry
SU(2)_L x SU(2)_R x U(1)_X x P_LR in the presence of a brane-localized Higgs
sector. In contrast to the existing literature, we perform the Kaluza-Klein
(KK) decomposition within the mass basis, which avoids the truncation of the KK
towers. Expanding the low-energy spectrum as well as the gauge couplings in
powers of the Higgs vacuum expectation value, we obtain analytic formulas which
allow for a deep understanding of the model-specific protection mechanisms of
the T parameter and the left-handed Z-boson couplings. In particular, in the
latter case we explain which contributions escape protection and identify them
with the irreducible sources of P_LR symmetry breaking. We furthermore show
explicitly that no protection mechanism is present in the charged-current
sector confirming existing model-independent findings. The main focus of the
phenomenological part of our work is a detailed discussion of Higgs-boson
couplings and their impact on physics at the CERN Large Hadron Collider. For
the first time, a complete one-loop calculation of all relevant Higgs-boson
production and decay channels is presented, incorporating the effects stemming
from the extended electroweak gauge-boson and fermion sectors.Comment: 74 pages, 13 figures, 3 tables. v2: Matches version published in JHE
- âŠ