6 research outputs found

    Reentrant FMS scheduling in loop layout with consideration of multi loading-unloading stations and shortcuts

    No full text
    This article is closed access.The scheduling problem in flexible manufacturing systems (FMS) environment with loop layout configuration has been shown to be a NP-hard problem. Moreover, the improvement and modification of the loop layout add to the difficulties in the production planning stage. The introduction of multi loading-unloading points and turntable shortcut resulted on more possible routes, thus increasing the complexity. This research addressed the reentrant FMS scheduling problem where jobs are allowed to reenter the system and revisit particular machines. The problem is to determine the optimal sequence of the jobs as well as the routing options. A modified genetic algorithm (GA) was proposed to generate the feasible solutions. The crowding distance-based substitution was incorporated to maintain the diversity of the population. A set of test was applied to compare the performance of the proposed approach with other methods. Further computational experiments were conducted to assess the significance of multi loading-unloading and shortcuts in reducing the makespan, mean flow time, and tardiness. The results highlighted that the proposed model was robust and effective in the scheduling problem for both small and large size problems

    Prokaryotic Hydrocarbon Degraders

    No full text
    Hydrocarbons have been part of the biosphere for millions of years, and a diverse group of prokaryotes has evolved to use them as a source of carbon and energy. To date, the vast majority of formally defined genera are eubacterial, in 7 of the 24 major phyla currently formally recognized by taxonomists (Tree of Life, http://tolweb.org/Eubacteria. Accessed 1 Sept 2017, 2017); principally in the Actinobacteria, the Bacteroidetes, the Firmicutes, and the Proteobacteria. Some Cyanobacteria have been shown to degrade hydrocarbons on a limited scale, but whether this is of any ecological significance remains to be seen – it is likely that all aerobic organisms show some basal metabolism of hydrocarbons by nonspecific oxygenases, and similar “universal” metabolism may occur in anaerobes. This chapter focuses on the now quite large number of named microbial genera where there is reasonably convincing evidence for hydrocarbon metabolism. We have found more than 320 genera of Eubacteria, and 12 genera of Archaea. Molecular methods are revealing a vastly greater diversity of currently uncultured organisms – Hug et al. (Nat Microbiol 1:16048, 2016) claim 92 named bacterial phyla, many with almost totally unknown physiology – and it seems reasonable to believe that the catalog of genera reported here will be substantially expanded in the future
    corecore