63 research outputs found
Recommended from our members
Early changes in apoplast composition associated with defence and disease in interactions between Phaseolus vulgaris and the halo blight pathogen Pseudomonas syringae pv. phaseolicola
The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of Pseudomonas syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K+, that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca2+, Fe2/3+ Mg2+, sucrose, β-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences
Nanostructured Biomaterials for Tissue Engineered Bone Tissue Reconstruction
Bone tissue engineering strategies are emerging as attractive alternatives to autografts and allografts in bone tissue reconstruction, in particular thanks to their association with nanotechnologies. Nanostructured biomaterials, indeed, mimic the extracellular matrix (ECM) of the natural bone, creating an artificial microenvironment that promotes cell adhesion, proliferation and differentiation. At the same time, the possibility to easily isolate mesenchymal stem cells (MSCs) from different adult tissues together with their multi-lineage differentiation potential makes them an interesting tool in the field of bone tissue engineering. This review gives an overview of the most promising nanostructured biomaterials, used alone or in combination with MSCs, which could in future be employed as bone substitutes. Recent works indicate that composite scaffolds made of ceramics/metals or ceramics/polymers are undoubtedly more effective than the single counterparts in terms of osteoconductivity, osteogenicity and osteoinductivity. A better understanding of the interactions between MSCs and nanostructured biomaterials will surely contribute to the progress of bone tissue engineering
Metabolite transport and associated sugar signalling systems underpinning source/ sink interactions
Metabolite transport between organelles, cells and source and sink tissues not only enables pathway co-ordination but it also facilitates whole plant communication, particularly in the transmission of information concerning resource availability. Carbon assimilation is co-ordinated with nitrogen assimilation to ensure that the building blocks of biomass production, amino acids and carbon skeletons, are available at the required amounts and stoichiometry, with associated transport processes making certain that these essential resources are transported from their sites of synthesis to those of utilization. Of the many possible posttranslational mechanisms that might participate in efficient co-ordination of metabolism and transport only reversible thiol-disulphide exchange mechanisms have been described in detail. Sucrose and trehalose metabolism are intertwined in the signalling hub that ensures appropriate resource allocation to drive growth and development under optimal and stress conditions, with trehalose-6-phosphate acting as an important signal for sucrose availability. The formidable suite of plant metabolite transporters provides enormous flexibility and adaptability in inter-pathway coordination and source-sink interactions. Focussing on the carbon metabolism network, we highlight the functions of different transporter families, and the important of thioredoxins in the metabolic dialogue between source and sink tissues. In addition, we address how these systems can be tailored for crop improvement
Calcified Algae for Tissue Engineering.
This book presents the latest advances in marine structures and related biomaterials for applications in both soft- and hard-tissue engineering, as well as controlled drug delivery
Generation, Annotation and Analysis of First Large-Scale Expressed Sequence Tags from Developing Fiber of Gossypium barbadense L
BACKGROUND: Cotton fiber is the world's leading natural fiber used in the manufacture of textiles. Gossypium is also the model plant in the study of polyploidization, evolution, cell elongation, cell wall development, and cellulose biosynthesis. G. barbadense L. is an ideal candidate for providing new genetic variations useful to improve fiber quality for its superior properties. However, little is known about fiber development mechanisms of G. barbadense and only a few molecular resources are available in GenBank. METHODOLOGY AND PRINCIPAL FINDINGS: In total, 10,979 high-quality expressed sequence tags (ESTs) were generated from a normalized fiber cDNA library of G. barbadense. The ESTs were clustered and assembled into 5852 unigenes, consisting of 1492 contigs and 4360 singletons. The blastx result showed 2165 unigenes with significant similarity to known genes and 2687 unigenes with significant similarity to genes of predicted proteins. Functional classification revealed that unigenes were abundant in the functions of binding, catalytic activity, and metabolic pathways of carbohydrate, amino acid, energy, and lipids. The function motif/domain-related cytoskeleton and redox homeostasis were enriched. Among the 5852 unigenes, 282 and 736 unigenes were identified as potential cell wall biosynthesis and transcription factors, respectively. Furthermore, the relationships among cotton species or between cotton and other model plant systems were analyzed. Some putative species-specific unigenes of G. barbadense were highlighted. CONCLUSIONS/SIGNIFICANCE: The ESTs generated in this study are from the first large-scale EST project for G. barbadense and significantly enhance the number of G. barbadense ESTs in public databases. This knowledge will contribute to cotton improvements by studying fiber development mechanisms of G. barbadense, establishing a breeding program using marker-assisted selection, and discovering candidate genes related to important agronomic traits of cotton through oligonucleotide array. Our work will also provide important resources for comparative genomics, polyploidization, and genome evolution among Gossypium species
Update on chloroplast research
Chloroplasts, the green differentiation form of plastids, are the sites of photosynthesis and other important plant functions. Genetic and genomic technologies have greatly boosted the rate of discovery and functional characterization of chloroplast proteins during the past decade. Indeed, data obtained using high-throughput methodologies, in particular proteomics and transcriptomics, are now routinely used to assign functions to chloroplast proteins. Our knowledge of many chloroplast processes, notably photosynthesis and photorespiration, has reached such an advanced state that biotechnological approaches to crop improvement now seem feasible. Meanwhile, efforts to identify the entire complement of chloroplast proteins and their interactions are progressing rapidly, making the organelle a prime target for systems biology research in plants
Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review
Tissue engineering and regenerative medicine has been providing exciting
technologies for the development of functional substitutes aimed to repair and
regenerate damaged tissues and organs. Inspired by the hierarchical nature of
bone, nanostructured biomaterials are gaining a singular attention for tissue
engineering, owing their ability to promote cell adhesion and proliferation, and
hence new bone growth, compared with conventional microsized materials.
Of particular interest are nanocomposites involving biopolymeric matrices and
bioactive nanosized fi llers. Biodegradability, high mechanical strength, and
osteointegration and formation of ligamentous tissue are properties required
for such materials. Biopolymers are advantageous due to their similarities with
extracellular matrices, specifi c degradation rates, and good biological performance.
By its turn, calcium phosphates possess favorable osteoconductivity,
resorbability, and biocompatibility. Herein, an overview on the available natural
polymer/calcium phosphate nanocomposite materials, their design, and properties
is presented. Scaffolds, hydrogels, and fi bers as biomimetic strategies for
tissue engineering, and processing methodologies are described. The specifi c
biological properties of the nanocomposites, as well as their interaction with
cells, including the use of bioactive molecules, are highlighted. Nanocomposites
in vivo studies using animal models are also reviewed and discussed.
 The research leading to this work has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS, and from QREN (ON.2 - NORTE-01-0124-FEDER-000016) cofinanced by North Portugal Regional Operational Program (ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF)
Aggressive dominance can decrease behavioral complexity on subordinates through synchronization of locomotor activities
Social environments are known to influence behavior. Moreover, within small social groups, dominant/subordinate relationships frequently emerge. Dominants can display aggressive behaviors towards subordinates and sustain priority access to resources. Herein, Japanese quail (Coturnix japonica) were used, given that they establish hierarchies through frequent aggressive interactions. We apply a combination of different mathematical tools to provide a precise quantification of the effect of social environments and the consequence of dominance at an individual level on the temporal dynamics of behavior. Main results show that subordinates performed locomotion dynamics with stronger long-range positive correlations in comparison to birds that receive few or no aggressions from conspecifics (more random dynamics). Dominant birds and their subordinates also showed a high level of synchronization in the locomotor pattern, likely emerging from the lack of environmental opportunities to engage in independent behavior. Findings suggest that dominance can potentially modulate behavioral dynamics through synchronization of locomotor activities.publishedVersionAlcala, Rocio. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Caliva, Jorge MartĂn. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Caliva, Jorge Martin. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina.Flesia, Ana Georgina. Facultad de Matemática, AstronomĂa, FĂsica y ComputaciĂłn; Argentina.Flesia, Ana Georgina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro de InvestigaciĂłn y Estudios de Matemática; Argentina.Marin, RaĂşl Hector. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Marin, RaĂşl Hector. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina.Kembro, Jackelyn Melissa. Universidad Nacional de CĂłrdoba. Facultad de Ciencias Exactas, FĂsicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Instituto de Investigaciones BiolĂłgicas y TecnolĂłgicas; Argentina
- …