90 research outputs found
Ultrafast Light and Electrons: Imaging the Invisible
In this chapter, the evolutionary and revolutionary developments of microscopic imaging are overviewed with focus on ultrashort light and electrons pulses; for simplicity, we shall use the term “ultrafast” for both. From Alhazen’s camera obscura, to Hooke and van Leeuwenhoek’s optical micrography, and on to three- and four-dimensional (4D) electron microscopy, the developments over a millennium have transformed humans’ scope of visualization. The changes in the length and time scales involved are unimaginable, beginning with the visible shadows of candles at the centimeter and second scales, and ending with invisible atoms with space and time dimensions of sub-nanometer and femtosecond, respectively. With these advances it has become possible to determine the structures of matter and to observe their elementary dynamics as they fold and unfold in real time, providing the means for visualizing materials behavior and biological function, with the aim of understanding emergent phenomena in complex systems. Both light and light-generated electrons are now at the forefront of femtosecond and attosecond science and technology, and the scope of applications has reached beyond the nuclear motion as electron dynamics become accessible
Abnormal ryanodine receptor channels in malignant hyperthermia.
Previous studies have demonstrated a defect associated with the calcium release mechanism of sarcoplasmic reticulum (SR) from individuals susceptible to malignant hyperthermia (MH). To examine whether SR calcium release channels were indeed altered in MH, SR vesicles were purified from normal and MH susceptible (MHS) porcine muscle. The Ca2+ dependence of calcium efflux rates from 45Ca2(+)-filled SR vesicles was then compared with the Ca2+ dependence of single-channel recordings of SR vesicles incorporated into planar lipid bilayers. The rate constants of 45Ca2+ efflux from MHS SR were two to threefold larger than from normal SR over a wide range of myoplasmic Ca2+. Normal and MHS single channels were progressively activated in a similar fashion by cis Ca2+ from pCa 7 to 4. However, below pCa 4, normal channels were inactivated by cis Ca2+, whereas MHS channels remained open for significantly longer times. The altered Ca2+ dependence of channel inactivation in MHS SR was also evident when Ca2+ was increased on the trans side while cis Ca2+ was held constant. We propose that a defect in a low-affinity Ca2+ binding site is responsible for the altered gating of MHS SR channels. Such a defect could logically result from a mutation in the gene encoding the calcium release channel, providing a testable hypothesis for the molecular basis of this inherited disorder
- …