110 research outputs found
Secondary Breast Augmentation: Managing Each Case
Breast augmentation is one of the most regularly performed interventions requiring reoperation in aesthetic surgery. For this reason, it involves a greater chance for complications. In this report, the authors aim to provide young plastic surgeons with guidelines based on their experience for responding to each of these complications, to explain the causes and ways of avoiding them, and to show how they can be treated when they occur
Temperature and pressure evolution of the crystal structure of Ax(Fe1-ySe)2 (A = Cs, Rb, K) studied by synchrotron powder diffraction
Temperature-dependent synchrotron powder diffraction on Cs0.83(Fe0.86Se)2
revealed first order I4/m to I4/mmm structural transformation around 216{\deg}C
associated with the disorder of the Fe vacancies. Irreversibility observed
during the transition is likely associated with a mobility of intercalated
Alkali atoms. Pressure-dependent synchrotron powder diffraction on
Cs0.83(Fe1-ySe)2, Rb0.85(Fe1-ySe)2 and K0.8(Fe1-ySe)2 (y ~ 0.14) indicated that
the I4/m superstructure reflections are present up to pressures of 120 kbar.
This may indicate that the ordering of the Fe vacancies is present in both
superconducting and non-superconductive states.Comment: 11 pages, 5 figures, 1 tabl
Crustal thickness variations along the Southeast Indian Ridge (100°–116°E) from 2-D body wave tomography
Axial morphology along the Southeast Indian Ridge (SEIR) systematically changes from an axial high to a deep rift valley at a nearly uniform intermediate spreading rate between 100°–116°E, west of the Australian-Antarctic Discordance (AAD). Basalt geochemistry has a consistent Indian–mid-ocean ridge basalt (MORB) type isotopic signature, so changes in axial topography are attributed to variations in both mantle temperature and melt supply. Wide-angle seismic refraction lines were shot to four ocean bottom hydrophones within SEIR segments P1, P2, S1, and T, where each segment is characterized by a different morphology. We constructed 2-D crustal velocity models by jointly inverting hand-picked P wave refraction (Pg) and Moho reflection (PmP) traveltime data using a top-down, minimum-structure methodology. The results show a 1.5 km eastward decrease in crustal thickness across the study area, with segment averages ranging from 6.1 km at P1 to 4.6 km at T. Melt generation models require a ~30°C decrease in mantle temperature toward the AAD to account for the crustal thickness trend. Significant changes in axial morphology accompany small-scale variations in crustal thickness, consistent with models of crustal accretion where ridge topography is determined by a balance between mantle temperature, melt supply, and cooling from hydrothermal circulation. Layer 3 thins by 3.0 km as layer 2 thickens by 1.4 km between segments P1 and T, reflecting the eastward decrease in melt supply and increase in melt lens depth. The trade-off in seismic layers may be explained by models relating the increase in overburden pressure on a deepening melt lens to the volume of magma erupted into the upper crust rather than cooling at depth to form new lower crustal material
Multiple Cellular Responses to Serotonin Contribute to Epithelial Homeostasis
Epithelial homeostasis incorporates the paradoxical concept of internal change (epithelial turnover) enabling the maintenance of anatomical status quo. Epithelial cell differentiation and cell loss (cell shedding and apoptosis) form important components of epithelial turnover. Although the mechanisms of cell loss are being uncovered the crucial triggers that modulate epithelial turnover through regulation of cell loss remain undetermined. Serotonin is emerging as a common autocrine-paracine regulator in epithelia of multiple organs, including the breast. Here we address whether serotonin affects epithelial turnover. Specifically, serotonin's roles in regulating cell shedding, apoptosis and barrier function of the epithelium. Using in vivo studies in mouse and a robust model of differentiated human mammary duct epithelium (MCF10A), we show that serotonin induces mammary epithelial cell shedding and disrupts tight junctions in a reversible manner. However, upon sustained exposure, serotonin induces apoptosis in the replenishing cell population, causing irreversible changes to the epithelial membrane. The staggered nature of these events induced by serotonin slowly shifts the balance in the epithelium from reversible to irreversible. These finding have very important implications towards our ability to control epithelial regeneration and thus address pathologies of aberrant epithelial turnover, which range from degenerative disorders (e.g.; pancreatitis and thyrioditis) to proliferative disorders (e.g.; mastitis, ductal ectasia, cholangiopathies and epithelial cancers)
M6 Membrane Protein Plays an Essential Role in Drosophila Oogenesis
We had previously shown that the transmembrane glycoprotein M6a, a member of the proteolipid protein (PLP) family, regulates neurite/filopodium outgrowth, hence, M6a might be involved in neuronal remodeling and differentiation. In this work we focused on M6, the only PLP family member present in Drosophila, and ortholog to M6a. Unexpectedly, we found that decreased expression of M6 leads to female sterility. M6 is expressed in the membrane of the follicular epithelium in ovarioles throughout oogenesis. Phenotypes triggered by M6 downregulation in hypomorphic mutants included egg collapse and egg permeability, thus suggesting M6 involvement in eggshell biosynthesis. In addition, RNAi-mediated M6 knockdown targeted specifically to follicle cells induced an arrest of egg chamber development, revealing that M6 is essential in oogenesis. Interestingly, M6-associated phenotypes evidenced abnormal changes of the follicle cell shape and disrupted follicular epithelium in mid- and late-stage egg chambers. Therefore, we propose that M6 plays a role in follicular epithelium maintenance involving membrane cell remodeling during oogenesis in Drosophila
Lawson criterion for ignition exceeded in an inertial fusion experiment
For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion
- …