153 research outputs found
Dynamic modelling of electrooptically modulated vertical compound cavity surface emitting semiconductor lasers
A generalized rate equation model is used to simulate the interrelated amplitude and frequency modulation properties of Electrooptically Modulated Vertical Compound Cavity Surface Emitting Semiconductor Lasers in both large and small signal modulation regimes. It is shown that the photon lifetime in the modulator subcavity provides the ultimate limit for the 3 dB modulation cutoff frequency. It is shown that there is an optimum design (number of periods) of both the intermediate and top multistack reflectors to maximise the large-signal modulation quality
Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives
The catalytic behavior of metal-organic frameworks of different structures (Fe(BTC), MIL-100(Fe), MIL-100(Cr) and Cu-3(BTC)(2)) was investigated in annulation reaction between 2-methyl-3-buten-2-ol and phenols differing in size (phenol, 2-naphthol). MIL-100(Fe) possessing intermediate Lewis acidity, perfect crystalline structure, and the highest S-BET surface area showed the highest activity (TOF = 0.7 and 1.4h(-1) for phenol and 2-naphthol, respectively) and selectivities to target benzopyran (45% and 65% at 16% of phenol and 2-naphthol conversion, respectively). The increasing strength of Lewis acid centers for MIL-100(Cr) was found to result in the dramatically decreased activity of the catalyst, while negligible conversion of phenols was found over Fe(BTC), characterized by a less ordered framework.M.O. and J.C. acknowledge the Czech Science Foundation for the support (14-07101S) and RNDr. Libor Brabec, CSc. for SEM images.Shamzhy, MV.; Opanasenko, MV.; García Gómez, H.; Cejka, J. (2015). Annulation of phenols with methylbutenol over MOFs: The role of catalyst structure and acid strength in producing 2,2-dimethylbenzopyran derivatives. Microporous and Mesoporous Materials. 202:297-302. doi:10.1016/j.micromeso.2014.10.003S29730220
Two Evolutionary Histories in the Genome of Rice: the Roles of Domestication Genes
Genealogical patterns in different genomic regions may be different due to the joint influence of gene flow and selection. The existence of two subspecies of cultivated rice provides a unique opportunity for analyzing these effects during domestication. We chose 66 accessions from the three rice taxa (about 22 each from Oryza sativa indica, O. sativa japonica, and O. rufipogon) for whole-genome sequencing. In the search for the signature of selection, we focus on low diversity regions (LDRs) shared by both cultivars. We found that the genealogical histories of these overlapping LDRs are distinct from the genomic background. While indica and japonica genomes generally appear to be of independent origin, many overlapping LDRs may have originated only once, as a result of selection and subsequent introgression. Interestingly, many such LDRs contain only one candidate gene of rice domestication, and several known domestication genes have indeed been “rediscovered” by this approach. In summary, we identified 13 additional candidate genes of domestication
Cyclic di-GMP is Essential for the Survival of the Lyme Disease Spirochete in Ticks
Cyclic dimeric GMP (c-di-GMP) is a bacterial second messenger that modulates many biological processes. Although its role in bacterial pathogenesis during mammalian infection has been documented, the role of c-di-GMP in a pathogen's life cycle within a vector host is less understood. The enzootic cycle of the Lyme disease pathogen Borrelia burgdorferi involves both a mammalian host and an Ixodes tick vector. The B. burgdorferi genome encodes a single copy of the diguanylate cyclase gene (rrp1), which is responsible for c-di-GMP synthesis. To determine the role of c-di-GMP in the life cycle of B. burgdorferi, an Rrp1-deficient B. burgdorferi strain was generated. The rrp1 mutant remains infectious in the mammalian host but cannot survive in the tick vector. Microarray analyses revealed that expression of a four-gene operon involved in glycerol transport and metabolism, bb0240-bb0243, was significantly downregulated by abrogation of Rrp1. In vitro, the rrp1 mutant is impaired in growth in the media containing glycerol as the carbon source (BSK-glycerol). To determine the contribution of the glycerol metabolic pathway to the rrp1 mutant phenotype, a glp mutant, in which the entire bb0240-bb0243 operon is not expressed, was generated. Similar to the rrp1 mutant, the glp mutant has a growth defect in BSK-glycerol medium. In vivo, the glp mutant is also infectious in mice but has reduced survival in ticks. Constitutive expression of the bb0240-bb0243 operon in the rrp1 mutant fully rescues the growth defect in BSK-glycerol medium and partially restores survival of the rrp1 mutant in ticks. Thus, c-di-GMP appears to govern a catabolic switch in B. burgdorferi and plays a vital role in the tick part of the spirochetal enzootic cycle. This work provides the first evidence that c-di-GMP is essential for a pathogen's survival in its vector host
Bacteriophage-Resistant Mutants in Yersinia pestis: Identification of Phage Receptors and Attenuation for Mice
Background: Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phageresistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings: The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD 50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance: We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophag
Recent climate change has driven divergent hydrological shifts in high-latitude peatlands
High-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate
Signals in the Soil: An Introduction to Wireless Underground Communications
In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well
Observation of charmed strange meson pair production in decays and in annihilation at
We observe the process and continuum
production at GeV (and
their charge conjugates) using the data samples collected by the Belle detector
at KEKB, where is or . Both
states are identified through their decay into
. We measure the products of branching fractions and the Born cross sections , and then
compare the ratios for decays and
for continuum production. We obtain , , , and for the , ,
, and final states
in the modes, respectively. Therefore, the
strong decay is expected to dominate in the processes. We also measure the ratios of branching
fractions and , which are consistent with isospin symmetry. The
second ratio is the first measurement of this quantity. Here, the first
uncertainties are statistical and the second are systematic
First measurement of the Michel parameter in the decay at Belle
We report the first measurement of the Michel parameter in the
decay with a new method proposed just
recently. The measurement is based on the reconstruction of the
events with subsequent muon
decay-in-flight in the Belle central drift chamber. The analyzed data sample of
collected by the Belle detector corresponds to
approximately pairs. We measure
, which is in
agreement with the Standard Model prediction of . Statistical
uncertainty dominates in this study, being a limiting factor, while systematic
uncertainty is well under control. Our analysis proved the practicability of
this promising method and its prospects for further precise measurement in
future experiments.Comment: 6 pages, 4 figures, submitted to Phys. Rev. Let
- …