27 research outputs found

    Mechanistic and evolutionary questions about epigenetic conflicts between transposable elements and their plant hosts

    Get PDF
    Transposable elements (TEs) constitute the majority of plant genomes, but most are epigenetically inactivated by their host. Research over the last decade has elucidated many of the molecular components that are required for TE silencing. In contrast, the evolutionary dynamics between TEs and silencing pathways are less clear. Here, we discuss current information about these dynamics from both mechanistic and evolutionary perspectives. We highlight new evidence that palindromic sequences within TEs may act as signals for host recognition and that cis-regulatory regions of TEs may be sites of ongoing arms races with host defenses. We also discuss patterns of TE aging after they are silenced; while there is not yet a consensus, it appears that TEs are removed more rapidly near genes, such that older TE insertions tend to be farther from genes. We conclude by discussing the energetic costs for maintaining silencing pathways, which appear to be substantive. The maintenance of silencing pathways across many species suggests that epigenetic emergencies are frequent

    The Tnt1 Retrotransposon Escapes Silencing in Tobacco, Its Natural Host

    Get PDF
    Retrotransposons' high capacity for mutagenesis is a threat that genomes need to control tightly. Transcriptional gene silencing is a general and highly effective control of retrotransposon expression. Yet, some retrotransposons manage to transpose and proliferate in plant genomes, suggesting that, as shown for plant viruses, retrotransposons can escape silencing. However no evidence of retrotransposon silencing escape has been reported. Here we analyze the silencing control of the tobacco Tnt1 retrotransposon and report that even though constructs driven by the Tnt1 promoter become silenced when stably integrated in tobacco, the endogenous Tnt1 elements remain active. Silencing of Tnt1-containing transgenes correlates with high DNA methylation and the inability to incorporate H2A.Z into their promoters, whereas the endogenous Tnt1 elements remain partially methylated at asymmetrical positions and incorporate H2A.Z upon induction. Our results show that the promoter of Tnt1 is a target of silencing in tobacco, but also that endogenous Tnt1 elements can escape this control and be expressed in their natural host
    corecore