301 research outputs found

    Periodic solutions of second order Hamiltonian systems bifurcating from infinity

    Get PDF
    The goal of this article is to study closed connected sets of periodic solutions, of autonomous second order Hamiltonian systems, emanating from infinity. The main idea is to apply the degree for SO(2)-equivariant gradient operators defined by the second author. Using the results due to Rabier we show that we cannot apply the Leray-Schauder degree to prove the main results of this article. It is worth pointing out that since we study connected sets of solutions, we also cannot use the Conley index technique and the Morse theory.Comment: 24 page

    Development of a method for reliable power input measurements in conventional and single-use stirred bioreactors at laboratory scale

    Get PDF
    Power input is an important engineering and scale-up/down criterion in stirred bioreactors. However, reliably measuring power input in laboratory-scale systems is still challenging. Even though torque measurements have proven to be suitable in pilot scale systems, sensor accuracy, resolution, and errors from relatively high levels of friction inside bearings can become limiting factors at smaller scales. An experimental setup for power input measurements was developed in this study by focusing on stainless steel and single-use bioreactors in the single-digit volume range. The friction losses inside the air bearings were effectively reduced to less than 0.5% of themeasurement range of the torque meter. A comparison of dimensionless power numbers determined for a reference Rushton turbine stirrer (N-P = 4.17 +/- 0.14 for fully turbulent conditions) revealed good agreement with literature data. Hence, the power numbers of several reusable and single-use bioreactors could be determined over a wide range of Reynolds numbers between 100 and > 10(4). Power numbers of between 0.3 and 4.5 (for Re = 10(4)) were determined for the different systems. The rigid plastic vessels showed similar power characteristics to their reusable counterparts. Thus, it was demonstrated that the torque-based technique can be used to reliably measure power input in stirred reusable and single-use bioreactors at the laboratory scale

    Genome-wide association and HLA fine-mapping studies identify risk loci and genetic pathways underlying allergic rhinitis

    Get PDF
    Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, with increasing incidence in westernized countries1,2. To elucidate the genetic architecture and understand the underlying disease mechanisms, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, which were confirmed in a replication phase of 60,720 cases and 618,527 controls. Functional annotation implicated genes involved in various immune pathways, and fine mapping of the HLA region suggested amino acid variants important for antigen binding. We further performed genome-wide association study (GWAS) analyses of allergic sensitization against inhalant allergens and nonallergic rhinitis, which suggested shared genetic mechanisms across rhinitis-related traits. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis

    Functional Interaction between Type III-Secreted Protein IncA of Chlamydophila psittaci and Human G3BP1

    Get PDF
    Chlamydophila (Cp.) psittaci, the causative agent of psittacosis in birds and humans, is the most important zoonotic pathogen of the family Chlamydiaceae. These obligate intracellular bacteria are distinguished by a unique biphasic developmental cycle, which includes proliferation in a membrane-bound compartment termed inclusion. All Chlamydiaceae spp. possess a coding capacity for core components of a Type III secretion apparatus, which mediates specific delivery of anti-host effector proteins either into the chlamydial inclusion membrane or into the cytoplasm of target eukaryotic cells. Here we describe the interaction between Type III-secreted protein IncA of Cp. psittaci and host protein G3BP1 in a yeast two-hybrid system. In GST-pull down and co-immunoprecipitation experiments both in vitro and in vivo interaction between full-length IncA and G3BP1 were shown. Using fluorescence microscopy, the localization of G3BP1 near the inclusion membrane of Cp. psittaci-infected Hep-2 cells was demonstrated. Notably, infection of Hep-2 cells with Cp. psittaci and overexpression of IncA in HEK293 cells led to a decrease in c-Myc protein concentration. This effect could be ascribed to the interaction between IncA and G3BP1 since overexpression of an IncA mutant construct disabled to interact with G3BP1 failed to reduce c-Myc concentration. We hypothesize that lowering the host cell c-Myc protein concentration may be part of a strategy employed by Cp. psittaci to avoid apoptosis and scale down host cell proliferation

    First description of a fossil chamaeleonid from Greece and its relevance for the European biogeographic history of the group

    Get PDF
    The fossil record of Chamaeleonidae is very scarce and any new specimen is therefore considered important for our understanding of the evolutionary and biogeographic history of the group. New specimens from the early Miocene of Aliveri (Evia Island), Greece constitute the only fossils of these lizards from southeastern Europe. Skull roofing material is tentatively attributed to the Czech species Chamaeleo cf. andrusovi, revealing a range extension for this taxon, whereas tooth-bearing elements are described as indeterminate chamaeleonids. The Aliveri fossils rank well among the oldest known reptiles from Greece, provide evidence for the dispersal routes of chameleons out of Africa towards the European continent and, additionally, imply strong affinities with coeval chamaeleonids from Central Europe

    The first transcriptome of Italian wall lizard, a new tool to infer about the Island Syndrome

    Get PDF
    Some insular lizards show a high degree of differentiation from their conspecific mainland populations, like Licosa island lizards, which are described as affected by Reversed Island Syndrome (RIS). In previous works, we demonstrated that some traits of RIS, as melanization, depend on a differential expression of gene encoding melanocortin receptors. To better understand the basis of syndrome, and providing raw data for future investigations, we generate the first de novo transcriptome of the Italian wall lizard. Comparing mainland and island transcriptomes, we link differences in life-traits to differential gene expression. Our results, taking together testis and brain sequences, generated 275,310 and 269,885 transcripts, 18,434 and 21,606 proteins in Gene Ontology annotation, for mainland and island respectively. Variant calling analysis identified about the same number of SNPs in island and mainland population. Instead, through a differential gene expression analysis we found some putative genes involved in syndrome more expressed in insular samples like Major Histocompatibility Complex class I, Immunoglobulins, Melanocortin 4 receptor, Neuropeptide Y and Proliferating Cell Nuclear Antigen
    corecore