8 research outputs found

    Inhibition of TGF-β Signaling and Decreased Apoptosis in IUGR-Associated Lung Disease in Rats

    Get PDF
    Intrauterine growth restriction is associated with impaired lung function in adulthood. It is unknown whether such impairment of lung function is linked to the transforming growth factor (TGF)-β system in the lung. Therefore, we investigated the effects of IUGR on lung function, expression of extracellular matrix (ECM) components and TGF-β signaling in rats. IUGR was induced in rats by isocaloric protein restriction during gestation. Lung function was assessed with direct plethysmography at postnatal day (P) 70. Pulmonary activity of the TGF-β system was determined at P1 and P70. TGF-β signaling was blocked in vitro using adenovirus-delivered Smad7. At P70, respiratory airway compliance was significantly impaired after IUGR. These changes were accompanied by decreased expression of TGF-β1 at P1 and P70 and a consistently dampened phosphorylation of Smad2 and Smad3. Furthermore, the mRNA expression levels of inhibitors of TGF-β signaling (Smad7 and Smurf2) were reduced, and the expression of TGF-β-regulated ECM components (e.g. collagen I) was decreased in the lungs of IUGR animals at P1; whereas elastin and tenascin N expression was significantly upregulated. In vitro inhibition of TGF-β signaling in NIH/3T3, MLE 12 and endothelial cells by adenovirus-delivered Smad7 demonstrated a direct effect on the expression of ECM components. Taken together, these data demonstrate a significant impact of IUGR on lung development and function and suggest that attenuated TGF-β signaling may contribute to the pathological processes of IUGR-associated lung disease

    Prenatal Lung Epithelial Cell-Specific Abrogation of Alk3-Bone Morphogenetic Protein Signaling Causes Neonatal Respiratory Distress by Disrupting Distal Airway Formation

    No full text
    Bone morphogenetic proteins (BMPs) play important roles in regulating lung development and function although the endogenous regulatory effects of BMP signaling are still controversial. We found that BMP type I receptor Alk3 is expressed predominantly in airway epithelial cells during development. The function of Alk3 in lung development was determined using an inducible knockout mouse model by crossing epithelial cell-specific Cre transgenic mice SPC-rtTA/TetO-Cre and floxed-Alk3 mice. Abrogation of Alk3 in mouse lung epithelia from either early lung organogenesis or late gestation resulted in similar neonatal respiratory distress phenotypes accompanied by collapsed lungs. Early-induction of Alk3 knockout in lung epithelial cells caused retardation of early lung branching morphogenesis, reduced cell proliferation, and differentiation. However, late gestation induction of the knockout caused changes in cell proliferation and survival, as shown by altered cell biology, reduced expression of peripheral epithelial markers (Clara cell-specific protein, surfactant protein C, and aquaporin-5), and lack of surfactant secretion. Furthermore, canonical Wnt signaling was perturbed, possibly through reduced Wnt inhibitory factor-1 expression in Alk3-knockout lungs. Therefore, our data suggest that deficiency of appropriate BMP signaling in lung epithelial cells results in prenatal lung malformation, neonatal atelectasis, and respiratory failure

    Looking ahead: where to next for animal models of bronchopulmonary dysplasia?

    No full text
    corecore