23,120 research outputs found

    Strangeness spin, magnetic moment and strangeness configurations of the proton

    Full text link
    The implications of the empirical signatures for the positivity of the strangeness magnetic moment μs\mu_s, and the negativity of the strangeness contribution to the proton spin Δs\Delta_s, on the possible uudssˉuuds\bar s configurations of five quarks in the proton are analyzed. The empirical signs for the values of these two observables can only be obtained in configurations where the uudsuuds system is orbitally excited and the sˉ\bar s quark is in the ground state. The configurations, in which the sˉ\bar s is orbitally excited, which include the conventional K+Λ0K^+\Lambda^0 congfiguration, with the exception of that, in which the uudsuuds component has spin 2, yield negative values for μs\mu_s. Here the strangeness spin Δs\Delta_s, the strangeness magnetic moment μs\mu_s and the axial coupling constant GAsG_A^s are calculated for all possible configurations of the uudssˉuuds\bar s component of the proton. In the configuration with [4]FS[22]F[22]S[4]_{FS}[22]_F[22]_S flavor-spin symmetry, which is likely to have the lowest energy, μs\mu_s is positive and Δs≃GAs≃−1/3μs\Delta_s\simeq G_A^s\simeq -1/3\mu_s.Comment: 17 page

    A New Solution of the Yang-Baxter Equation Related to the Adjoint Representation of UqB2U_{q}B_{2}

    Full text link
    A new solution of the Yang-Baxter equation, that is related to the adjoint representation of the quantum enveloping algebra UqB2U_{q}B_{2}, is obtained by fusion formulas from a non-standard solution.Comment: 16 pages (Latex), Preprint BIHEP-TH-93-3

    The Adaptive Spectral Koopman Method for Dynamical Systems

    Full text link
    Dynamical systems have a wide range of applications in mechanics, electrical engineering, chemistry, and so on. In this work, we propose the adaptive spectral Koopman (ASK) method to solve nonlinear autonomous dynamical systems. This novel numerical method leverages the spectral-collocation (i.e., pseudo-spectral) method and properties of the Koopman operator to obtain the solution of a dynamical system. Specifically, this solution is represented as a linear combination of the multiplication of Koopman operator's eigenfunctions and eigenvalues, and these eigenpairs are approximated using the spectral method. Unlike conventional time evolution algorithms such as Euler's scheme and the Runge-Kutta scheme, ASK is mesh-free, and hence is more flexible when evaluating the solution. Numerical experiments demonstrate high accuracy of ASK for solving one-, two- and three-dimensional dynamical systems.Comment: 31 pages, 13 figure

    An adaptive scalloping suppression method for ScanSAR images based on the Kalman filter

    Get PDF

    Effects of isospin and momentum dependent interactions on thermal properties of asymmetric nuclear matter

    Full text link
    Thermal properties of asymmetric nuclear matter are studied within a self-consistent thermal model using an isospin and momentum dependent interaction (MDI) constrained by the isospin diffusion data in heavy-ion collisions, a momentum-independent interaction (MID), and an isoscalar momentum-dependent interaction (eMDYI). In particular, we study the temperature dependence of the isospin-dependent bulk and single-particle properties, the mechanical and chemical instabilities, and liquid-gas phase transition in hot asymmetric nuclear matter. Our results indicate that the temperature dependence of the equation of state and the symmetry energy are not so sensitive to the momentum dependence of the interaction. The symmetry energy at fixed density is found to generally decrease with temperature and for the MDI interaction the decrement is essentially due to the potential part. It is further shown that only the low momentum part of the single-particle potential and the nucleon effective mass increases significantly with temperature for the momentum-dependent interactions. For the MDI interaction, the low momentum part of the symmetry potential is significantly reduced with increasing temperature. For the mechanical and chemical instabilities as well as the liquid-gas phase transition in hot asymmetric nuclear matter, our results indicate that the boundary of these instabilities and the phase-coexistence region generally shrink with increasing temperature and is sensitive to the density dependence of the symmetry energy and the isospin and momentum dependence of the nuclear interaction, especially at higher temperatures.Comment: 21 pages, 29 figure

    The Drinfel'd twisted XYZ model

    Full text link
    We construct a factorizing Drinfel'd twist for a face type model equivalent to the XYZ model. Completely symmetric expressions for the operators of the monodromy matrix are obtained.Comment: 15 pages, 4 figures, second preprint no. added, reference [14] added, typos correcte
    • …
    corecore