456 research outputs found

    Topological quantization and degeneracy in Josephson-junction arrays

    Full text link
    We consider the conductivity quantization in two-dimensional arrays of mesoscopic Josephson junctions, and examine the associated degeneracy in various regimes of the system. The filling factor of the system may be controlled by the gate voltage as well as the magnetic field, and its appropriate values for quantization is obtained by employing the Jain hierarchy scheme both in the charge description and in the vortex description. The duality between the two descriptions then suggests the possibility that the system undergoes a change in degeneracy while the quantized conductivity remains fixed.Comment: To appear in Phys. Rev.

    Network Marketing on a Small-World Network

    Full text link
    We investigate a dynamic model of network marketing in a small-world network structure artificially constructed similarly to the Watts-Strogatz network model. Different from the traditional marketing, consumers can also play the role of the manufacturer's selling agents in network marketing, which is stimulated by the referral fee the manufacturer offers. As the wiring probability α\alpha is increased from zero to unity, the network changes from the one-dimensional regular directed network to the star network where all but one player are connected to one consumer. The price pp of the product and the referral fee rr are used as free parameters to maximize the profit of the manufacturer. It is observed that at α=0\alpha=0 the maximized profit is constant independent of the network size NN while at α≠0\alpha \neq 0, it increases linearly with NN. This is in parallel to the small-world transition. It is also revealed that while the optimal value of pp stays at an almost constant level in a broad range of α\alpha, that of rr is sensitive to a change in the network structure. The consumer surplus is also studied and discussed.Comment: 12 pages, to appear in Physica

    PHS48 Cost-Effectiveness Analysis of Tolvaptan for Hyponatreamia in South Korea

    Get PDF
    Lanz, AlfredoPla general de la part frontal de dona ajaguda sobre un suport en forma de llit o taula. Va ser donada per l'autor, Alfredo Lanz, i simbolitza el mar Mediterrani. Feta en tres planxes d'acer retallades de colors vius: verd, vermell i groc

    Micro Membrane Filters for Passive Plasma Extraction From Whole Human Blood Using Silicon Nitride-based Microfilters and Plama Collection Using Agarose Gels

    Get PDF
    AbstractThe novelty of this study resides in the fabrication of a passive, operating on capillary force, penetration-flow microfluidic device for plasma separation, based on both silicon nitride combination (SiN-SiO-SiN)-based microfilters and agarose gels, and its characterization for plasma separation from whole human blood. The fabrication processes are compatible with IC process protocols, with merits of mass productions and precise size control. The fabrication process for silicon nitride membrane was reported at Lab Chip [1], and quantification its applications to affinity-based protein separation on the silicon nitride was reported at MicroTAS’07 [2]. Our method differs from that of group Yobas [3] in the specific separation method and materials, and of group Pizziconi [4] in the geometry of the filter, and fluidic components with the structure

    Synchronization in a System of Globally Coupled Oscillators with Time Delay

    Full text link
    We study the synchronization phenomena in a system of globally coupled oscillators with time delay in the coupling. The self-consistency equations for the order parameter are derived, which depend explicitly on the amount of delay. Analysis of these equations reveals that the system in general exhibits discontinuous transitions in addition to the usual continuous transition, between the incoherent state and a multitude of coherent states with different synchronization frequencies. In particular, the phase diagram is obtained on the plane of the coupling strength and the delay time, and ubiquity of multistability as well as suppression of the synchronization frequency is manifested. Numerical simulations are also performed to give consistent results

    Lattice effects on the current-voltage characteristics of superconducting arrays

    Full text link
    The lattice effects on the current-voltage characteristics of two-dimensional arrays of resistively shunted Josephson junctions are investigated. The lattice potential energies due to the discrete lattice structure are calculated for several geometries and directions of current injection. We compare the energy barrier for vortex-pair unbinding with the lattice pinning potential, which shows that lattice effects are negligible in the low-current limit as well as in the high-current limit. At intermediate currents, on the other hand, the lattice potential becomes comparable to the barrier height and the lattice effects may be observed in the current-voltage characteristics.Comment: 5 pages including 5 figures in two columns, to appear in Phys. Rev.

    Quantum phase transitions in superconducting arrays under external magnetic fields

    Full text link
    We study the zero-temperature phase transitions of two-dimensional superconducting arrays with both the self- and the junction capacitances in the presence of external magnetic fields. We consider two kinds of excitations from the Mott insulating phase: charge-dipole excitations and single-charge excitations, and apply the second-order perturbation theory to find their energies. The resulting phase boundaries are found to depend strongly on the magnetic frustration, which measures the commensurate-incommensurate effects. Comparison of the obtained values with those in recent experiment suggests the possibility that the superconductor-insulator transition observed in experiment may not be of the Berezinskii-Kosterlitz-Thouless type. The system is also transformed to a classical three-dimensional XY model with the magnetic field in the time-direction; this allows the analogy to bulk superconductors, revealing the nature of the phase transitions.Comment: 9 pages including 7 figures, to appear in Phys. Rev.

    Spatiotemporal Stochastic Resonance in Fully Frustrated Josephson Ladders

    Full text link
    We consider a Josephson-junction ladder in an external magnetic field with half flux quantum per plaquette. When driven by external currents, periodic in time and staggered in space, such a fully frustrated system is found to display spatiotemporal stochastic resonance under the influence of thermal noise. Such resonance behavior is investigated both numerically and analytically, which reveals significant effects of anisotropy and yields rich physics.Comment: 8 pages in two columns, 8 figures, to appear in Phys. Rev.

    Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube

    Full text link
    We have studied the afterpulse of a hemispherical photomultiplier tube for an upcoming reactor neutrino experiment. The timing, the amplitude, and the rate of the afterpulse for a 10 inch photomultiplier tube were measured with a 400 MHz FADC up to 16 \ms time window after the initial signal generated by an LED light pulse. The time and amplitude correlation of the afterpulse shows several distinctive groups. We describe the dependencies of the afterpulse on the applied high voltage and the amplitude of the main light pulse. The present data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure
    • …
    corecore