225 research outputs found
Manipulation of spin dephasing in InAs quantum wires
The spin dephasing due to the Rashba spin-orbit coupling, especially its
dependence on the direction of the electric field is studied in InAs quantum
wire. We find that the spin dephasing is strongly affected by the angle of
Rashba effective magnetic field and the applied magnetic field. The
nonlinearity in spin dephasing time versus the direction of the electric field
shows a potential evenue to manipulate the spin lifetime in spintronic device.
Moreover, we figure out a quantity that can well represent the inhomogeneous
broadening of the system which may help us to understand the many-body spin
dephasing due to the Rashba effect.Comment: 4 pages, 3 figure
Spin-dependent hole quantum transport in Aharonov-Bohm ring structure: possible schemes for spin filter
We study the Aharonov-Bohm (AB) effect in two-dimensional mesoscopic frame in
hole systems. We show that differing from the AB effect in electron systems,
due to the presence of both the heavy hole and the light hole, the conductances
not only show the normal spin-unresolved AB oscillations, but also become
spin-separated. Some schemes for spin filter based on the abundant interference
characteristics are proposed.Comment: 4 pages, 5 figures. Phys. Lett. A, 2005, in pres
Analytical solutions for black-hole critical behaviour
Dynamical Einstein cluster is a spherical self-gravitating system of
counterrotating particles, which may expand, oscillate and collapse. This
system exhibits critical behaviour in its collapse at the threshold of black
hole formation. It appears when the specific angular momentum of particles is
tuned finely to the critical value. We find the unique exact self-similar
solution at the threshold. This solution begins with a regular surface,
involves timelike naked singularity formation and asymptotically approaches a
static self-similar cluster.Comment: 4 pages, 3 figures, accepted for publication in General Relativity
and Gravitation, typos correcte
Rebounce and Black hole formation in a Gravitational Collapse Model with Vanishing Radial Pressure
We examine spherical gravitational collapse of a matter model with vanishing
radial pressure and non-zero tangential pressure. It is seen analytically that
the collapsing cloud either forms a black hole or disperses depending on values
of the initial parameters which are initial density, tangential pressure and
velocity profile of the cloud. A threshold of black hole formation is observed
near which a scaling relation is obtained for the mass of black hole, assuming
initial profiles to be smooth. The similarities in the behaviour of this model
at the onset of black hole formation with that of numerical critical behaviour
in other collapse models are indicated.Comment: 15 pages, To be published in Gen.Rel.Gra
Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra
A state of matter is characterized by its symmetry breaking and elementary
excitations.
A supersolid is a state which breaks both translational symmetry and internal
symmetry.
Here, we review some past and recent works in phenomenological
Ginsburg-Landau theories, ground state trial wavefunctions and microscopic
numerical calculations. We also write down a new effective supersolid
Hamiltonian on a lattice.
The eigenstates of the Hamiltonian contains both the ground state
wavefunction and all the excited states (supersolidon) wavefunctions. We
contrast various kinds of supersolids in both continuous systems and on
lattices, both condensed matter and cold atom systems. We provide additional
new insights in studying their order parameters, symmetry breaking patterns,
the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure
Modelling of Optical Detection of Spin-Polarized Carrier Injection into Light-Emitting Devices
We investigate the emission of multimodal polarized light from Light Emitting
Devices due to spin-aligned carriers injection. The results are derived through
operator Langevin equations, which include thermal and carrier-injection
fluctuations, as well as non-radiative recombination and electronic g-factor
temperature dependence. We study the dynamics of the optoelectronic processes
and show how the temperature-dependent g-factor and magnetic field affect the
polarization degree of the emitted light. In addition, at high temperatures,
thermal fluctuation reduces the efficiency of the optoelectronic detection
method for measuring spin-polarization degree of carrier injection into
non-magnetic semicondutors.Comment: 15 pages, 7 figures, replaced by revised version. To appear in Phys.
Rev.
Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings
Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal
barrier coatings have been developed via low activity chemical vapor deposition and high activity
pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on
NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed
when switching processes. The structural evolution of each coating at various stages of the
fabrication process has been and subsequent cyclic oxidation is presented, and the relevant
interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of
these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the
formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in
need of further improvement in both cases
Spin oscillations in transient diffusion of a spin pulse in n-type semiconductor quantum wells
By studying the time and spatial evolution of a pulse of the spin
polarization in -type semiconductor quantum wells, we highlight the
importance of the off-diagonal spin coherence in spin diffusion and transport.
Spin oscillations and spin polarization reverse along the the direction of spin
diffusion in the absence of the applied magnetic field are predicted from our
investigation.Comment: 5 pages, 4 figures, accepted for publication in PR
Spin relaxation in (110) and (001) InAs/GaSb superlattices
We report an enhancement of the electron spin relaxation time (T1) in a (110)
InAs/GaSb superlattice by more than an order of magnitude (25 times) relative
to the corresponding (001) structure. The spin dynamics were measured using
polarization sensitive pump probe techniques and a mid-infrared, subpicosecond
PPLN OPO. Longer T1 times in (110) superlattices are attributed to the
suppression of the native interface asymmetry and bulk inversion asymmetry
contributions to the precessional D'yakonov Perel spin relaxation process.
Calculations using a nonperturbative 14-band nanostructure model give good
agreement with experiment and indicate that possible structural inversion
asymmetry contributions to T1 associated with compositional mixing at the
superlattice interfaces may limit the observed spin lifetime in (110)
superlattices. Our findings have implications for potential spintronics
applications using InAs/GaSb heterostructures.Comment: 4 pages, 2 figure
Dark matter and Colliders searches in the MSSM
We study the complementarity between dark matter experiments (direct
detection and indirect detections) and accelerator facilities (the CERN LHC and
a TeV Linear Collider) in the framework of the
constrained Minimal Supersymmetric Standard Model (MSSM). We show how
non--universality in the scalar and gaugino sectors can affect the experimental
prospects to discover the supersymmetric particles. The future experiments will
cover a large part of the parameter space of the MSSM favored by WMAP
constraint on the relic density, but there still exist some regions beyond
reach for some extreme (fine tuned) values of the supersymmetric parameters.
Whereas the Focus Point region characterized by heavy scalars will be easily
probed by experiments searching for dark matter, the regions with heavy
gauginos and light sfermions will be accessible more easily by collider
experiments. More informations on both supersymmetry and astrophysics
parameters can be thus obtained by correlating the different signals.Comment: 25 pages, 10 figures, corrected typos and reference adde
- …