199 research outputs found

    Manipulation of spin dephasing in InAs quantum wires

    Full text link
    The spin dephasing due to the Rashba spin-orbit coupling, especially its dependence on the direction of the electric field is studied in InAs quantum wire. We find that the spin dephasing is strongly affected by the angle of Rashba effective magnetic field and the applied magnetic field. The nonlinearity in spin dephasing time versus the direction of the electric field shows a potential evenue to manipulate the spin lifetime in spintronic device. Moreover, we figure out a quantity that can well represent the inhomogeneous broadening of the system which may help us to understand the many-body spin dephasing due to the Rashba effect.Comment: 4 pages, 3 figure

    Analytical solutions for black-hole critical behaviour

    Full text link
    Dynamical Einstein cluster is a spherical self-gravitating system of counterrotating particles, which may expand, oscillate and collapse. This system exhibits critical behaviour in its collapse at the threshold of black hole formation. It appears when the specific angular momentum of particles is tuned finely to the critical value. We find the unique exact self-similar solution at the threshold. This solution begins with a regular surface, involves timelike naked singularity formation and asymptotically approaches a static self-similar cluster.Comment: 4 pages, 3 figures, accepted for publication in General Relativity and Gravitation, typos correcte

    Spin-dependent hole quantum transport in Aharonov-Bohm ring structure: possible schemes for spin filter

    Full text link
    We study the Aharonov-Bohm (AB) effect in two-dimensional mesoscopic frame in hole systems. We show that differing from the AB effect in electron systems, due to the presence of both the heavy hole and the light hole, the conductances not only show the normal spin-unresolved AB oscillations, but also become spin-separated. Some schemes for spin filter based on the abundant interference characteristics are proposed.Comment: 4 pages, 5 figures. Phys. Lett. A, 2005, in pres

    Rebounce and Black hole formation in a Gravitational Collapse Model with Vanishing Radial Pressure

    Full text link
    We examine spherical gravitational collapse of a matter model with vanishing radial pressure and non-zero tangential pressure. It is seen analytically that the collapsing cloud either forms a black hole or disperses depending on values of the initial parameters which are initial density, tangential pressure and velocity profile of the cloud. A threshold of black hole formation is observed near which a scaling relation is obtained for the mass of black hole, assuming initial profiles to be smooth. The similarities in the behaviour of this model at the onset of black hole formation with that of numerical critical behaviour in other collapse models are indicated.Comment: 15 pages, To be published in Gen.Rel.Gra

    Classification of a supersolid: Trial wavefunctions, Symmetry breakings and Excitation spectra

    Full text link
    A state of matter is characterized by its symmetry breaking and elementary excitations. A supersolid is a state which breaks both translational symmetry and internal U(1) U(1) symmetry. Here, we review some past and recent works in phenomenological Ginsburg-Landau theories, ground state trial wavefunctions and microscopic numerical calculations. We also write down a new effective supersolid Hamiltonian on a lattice. The eigenstates of the Hamiltonian contains both the ground state wavefunction and all the excited states (supersolidon) wavefunctions. We contrast various kinds of supersolids in both continuous systems and on lattices, both condensed matter and cold atom systems. We provide additional new insights in studying their order parameters, symmetry breaking patterns, the excitation spectra and detection methods.Comment: REVTEX4, 19 pages, 3 figure

    Modelling of Optical Detection of Spin-Polarized Carrier Injection into Light-Emitting Devices

    Get PDF
    We investigate the emission of multimodal polarized light from Light Emitting Devices due to spin-aligned carriers injection. The results are derived through operator Langevin equations, which include thermal and carrier-injection fluctuations, as well as non-radiative recombination and electronic g-factor temperature dependence. We study the dynamics of the optoelectronic processes and show how the temperature-dependent g-factor and magnetic field affect the polarization degree of the emitted light. In addition, at high temperatures, thermal fluctuation reduces the efficiency of the optoelectronic detection method for measuring spin-polarization degree of carrier injection into non-magnetic semicondutors.Comment: 15 pages, 7 figures, replaced by revised version. To appear in Phys. Rev.

    Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings

    Get PDF
    Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal barrier coatings have been developed via low activity chemical vapor deposition and high activity pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed when switching processes. The structural evolution of each coating at various stages of the fabrication process has been and subsequent cyclic oxidation is presented, and the relevant interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in need of further improvement in both cases

    Spin oscillations in transient diffusion of a spin pulse in n-type semiconductor quantum wells

    Full text link
    By studying the time and spatial evolution of a pulse of the spin polarization in nn-type semiconductor quantum wells, we highlight the importance of the off-diagonal spin coherence in spin diffusion and transport. Spin oscillations and spin polarization reverse along the the direction of spin diffusion in the absence of the applied magnetic field are predicted from our investigation.Comment: 5 pages, 4 figures, accepted for publication in PR

    Spin relaxation in (110) and (001) InAs/GaSb superlattices

    Full text link
    We report an enhancement of the electron spin relaxation time (T1) in a (110) InAs/GaSb superlattice by more than an order of magnitude (25 times) relative to the corresponding (001) structure. The spin dynamics were measured using polarization sensitive pump probe techniques and a mid-infrared, subpicosecond PPLN OPO. Longer T1 times in (110) superlattices are attributed to the suppression of the native interface asymmetry and bulk inversion asymmetry contributions to the precessional D'yakonov Perel spin relaxation process. Calculations using a nonperturbative 14-band nanostructure model give good agreement with experiment and indicate that possible structural inversion asymmetry contributions to T1 associated with compositional mixing at the superlattice interfaces may limit the observed spin lifetime in (110) superlattices. Our findings have implications for potential spintronics applications using InAs/GaSb heterostructures.Comment: 4 pages, 2 figure

    Dark matter and Colliders searches in the MSSM

    Full text link
    We study the complementarity between dark matter experiments (direct detection and indirect detections) and accelerator facilities (the CERN LHC and a s=1\sqrt{s}= 1 TeV e+e−e^+e^- Linear Collider) in the framework of the constrained Minimal Supersymmetric Standard Model (MSSM). We show how non--universality in the scalar and gaugino sectors can affect the experimental prospects to discover the supersymmetric particles. The future experiments will cover a large part of the parameter space of the MSSM favored by WMAP constraint on the relic density, but there still exist some regions beyond reach for some extreme (fine tuned) values of the supersymmetric parameters. Whereas the Focus Point region characterized by heavy scalars will be easily probed by experiments searching for dark matter, the regions with heavy gauginos and light sfermions will be accessible more easily by collider experiments. More informations on both supersymmetry and astrophysics parameters can be thus obtained by correlating the different signals.Comment: 25 pages, 10 figures, corrected typos and reference adde
    • …
    corecore