4 research outputs found

    Quantum gates using electronic and nuclear spins of Yb+^{+} in a magnetic field gradient

    Full text link
    An efficient scheme is proposed to carry out gate operations on an array of trapped Yb+^+ ions, based on a previous proposal using both electronic and nuclear degrees of freedom in a magnetic field gradient. For this purpose we consider the Paschen-Back regime (strong magnetic field) and employ a high-field approximation in this treatment. We show the possibility to suppress the unwanted coupling between the electron spins by appropriately swapping states between electronic and nuclear spins. The feasibility of generating the required high magnetic field is discussed

    Electron spin as a spectrometer of nuclear spin noise and other fluctuations

    Full text link
    This chapter describes the relationship between low frequency noise and coherence decay of localized spins in semiconductors. Section 2 establishes a direct relationship between an arbitrary noise spectral function and spin coherence as measured by a number of pulse spin resonance sequences. Section 3 describes the electron-nuclear spin Hamiltonian, including isotropic and anisotropic hyperfine interactions, inter-nuclear dipolar interactions, and the effective Hamiltonian for nuclear-nuclear coupling mediated by the electron spin hyperfine interaction. Section 4 describes a microscopic calculation of the nuclear spin noise spectrum arising due to nuclear spin dipolar flip-flops with quasiparticle broadening included. Section 5 compares our explicit numerical results to electron spin echo decay experiments for phosphorus doped silicon in natural and nuclear spin enriched samples.Comment: Book chapter in "Electron spin resonance and related phenomena in low dimensional structures", edited by Marco Fanciulli. To be published by Springer-Verlag in the TAP series. 35 pages, 9 figure
    corecore