9 research outputs found

    Synapse efficiency diverges due to synaptic pruning following over-growth

    Full text link
    In the development of the brain, it is known that synapses are pruned following over-growth. This pruning following over-growth seems to be a universal phenomenon that occurs in almost all areas -- visual cortex, motor area, association area, and so on. It has been shown numerically that the synapse efficiency is increased by systematic deletion. We discuss the synapse efficiency to evaluate the effect of pruning following over-growth, and analytically show that the synapse efficiency diverges as O(log c) at the limit where connecting rate c is extremely small. Under a fixed synapse number criterion, the optimal connecting rate, which maximize memory performance, exists.Comment: 15 pages, 16 figure

    Linear stability analysis of retrieval state in associative memory neural networks of spiking neurons

    Full text link
    We study associative memory neural networks of the Hodgkin-Huxley type of spiking neurons in which multiple periodic spatio-temporal patterns of spike timing are memorized as limit-cycle-type attractors. In encoding the spatio-temporal patterns, we assume the spike-timing-dependent synaptic plasticity with the asymmetric time window. Analysis for periodic solution of retrieval state reveals that if the area of the negative part of the time window is equivalent to the positive part, then crosstalk among encoded patterns vanishes. Phase transition due to the loss of the stability of periodic solution is observed when we assume fast alpha-function for direct interaction among neurons. In order to evaluate the critical point of this phase transition, we employ Floquet theory in which the stability problem of the infinite number of spiking neurons interacting with alpha-function is reduced into the eigenvalue problem with the finite size of matrix. Numerical integration of the single-body dynamics yields the explicit value of the matrix, which enables us to determine the critical point of the phase transition with a high degree of precision.Comment: Accepted for publication in Phys. Rev.

    Mechanisms underlying a thalamocortical transformation during active tactile sensation

    Get PDF
    During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brain’s ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit

    Automatic affective dynamics: An activation–habituation model of affective assimilation and contrast

    No full text
    Abstract. Our modeling approach seeks to better understand the computational dynamics of the affective and cognitive systems. One experimental phenomenon open to such dynamical analysis is "affective priming "-- or the influence of a prior stimulus on subsequent affective processing. In this type of procedure, ‘assimilation priming ’ refers to when the response to the target is biased in favor of the prime, such as with brief or minimally attended primes. However, following long durations or highly attended primes, the response to the target is often biased against the prime, which is termed ‘contrast priming’. We present a neural dynamics model of affective priming in which this transition from assimilation to contrast occurs automatically as a result of habituation. Unlike response strategies, this transition is predicted to rise and fall in a gradual nonlinear manner as a function of prime duration. We confirmed this prediction with a speeded affect judgment task that manipulated the exposure duration of valenced images.
    corecore