5 research outputs found

    Morphology of ledge patterns during step flow growth of metal surfaces vicinal to fcc(001)

    Get PDF
    The morphological development of step edge patterns in the presence of meandering instability during step flow growth is studied by simulations and numerical integration of a continuum model. It is demonstrated that the kink Ehrlich-Schwoebel barrier responsible for the instability leads to an invariant shape of the step profiles. The step morphologies change with increasing coverage from a somewhat triangular shape to a more flat, invariant steady state form. The average pattern shape extracted from the simulations is shown to be in good agreement with that obtained from numerical integration of the continuum theory.Comment: 4 pages, 4 figures, RevTeX 3, submitted to Phys. Rev.

    Competing mechanisms for step meandering in unstable growth

    Full text link
    The meander instability of a vicinal surface growing under step flow conditions is studied within a solid-on-solid model. In the absence of edge diffusion the selected meander wavelength agrees quantitatively with the continuum linear stability analysis of Bales and Zangwill [Phys. Rev. B {\bf 41}, 4400 (1990)]. In the presence of edge diffusion a local instability mechanism related to kink rounding barriers dominates, and the meander wavelength is set by one-dimensional nucleation. The long-time behavior of the meander amplitude differs in the two cases, and disagrees with the predictions of a nonlinear step evolution equation [O. Pierre-Louis et al., Phys. Rev. Lett. {\bf 80}, 4221 (1998)]. The variation of the meander wavelength with the deposition flux and with the activation barriers for step adatom detachment and step crossing (the Ehrlich-Schwoebel barrier) is studied in detail. The interpretation of recent experiments on surfaces vicinal to Cu(100) [T. Maroutian et al., Phys. Rev. B {\bf 64}, 165401 (2001)] in the light of our results yields an estimate for the kink barrier at the close packed steps.Comment: 8 pages, 7 .eps figures. Final version. Some errors in chapter V correcte

    Surface Kinetics and Generation of Different Terms in a Conservative Growth Equation

    Full text link
    A method based on the kinetics of adatoms on a growing surface under epitaxial growth at low temperature in (1+1) dimensions is proposed to obtain a closed form of local growth equation. It can be generalized to any growth problem as long as diffusion of adatoms govern the surface morphology. The method can be easily extended to higher dimensions. The kinetic processes contributing to various terms in the growth equation (GE) are identified from the analysis of in-plane and downward hops. In particular, processes corresponding to the (h -> -h) symmetry breaking term and curvature dependent term are discussed. Consequence of these terms on the stable and unstable transition in (1+1) dimensions is analyzed. In (2+1) dimensions it is shown that an additional (h -> -h) symmetry breaking term is generated due to the in-plane curvature associated with the mound like structures. This term is independent of any diffusion barrier differences between in-plane and out of-plane migration. It is argued that terms generated in the presence of downward hops are the relevant terms in a GE. Growth equation in the closed form is obtained for various growth models introduced to capture most of the processes in experimental Molecular Beam Epitaxial growth. Effect of dissociation is also considered and is seen to have stabilizing effect on the growth. It is shown that for uphill current the GE approach fails to describe the growth since a given GE is not valid over the entire substrate.Comment: 14 pages, 7 figure
    corecore