6 research outputs found

    Infinite spin particles

    Full text link
    We show that Wigner's infinite spin particle classically is described by a reparametrization invariant higher order geometrical Lagrangian. The model exhibit unconventional features like tachyonic behaviour and momenta proportional to light-like accelerations. A simple higher order superversion for half-odd integer particles is also derived. Interaction with external vector fields and curved spacetimes are analyzed with negative results except for (anti)de Sitter spacetimes. We quantize the free theories covariantly and show that the resulting wave functions are fields containing arbitrary large spins. Closely related infinite spin particle models are also analyzed.Comment: 43 pages, Late

    Covariant quantization of infinite spin particle models, and higher order gauge theories

    Full text link
    Further properties of a recently proposed higher order infinite spin particle model are derived. Infinitely many classically equivalent but different Hamiltonian formulations are shown to exist. This leads to a condition of uniqueness in the quantization process. A consistent covariant quantization is shown to exist. Also a recently proposed supersymmetric version for half-odd integer spins is quantized. A general algorithm to derive gauge invariances of higher order Lagrangians is given and applied to the infinite spin particle model, and to a new higher order model for a spinning particle which is proposed here, as well as to a previously given higher order rigid particle model. The latter two models are also covariantly quantized.Comment: 38 pages, Late
    corecore