65 research outputs found
Phase diagram and upper critical field of homogenously disordered epitaxial 3-dimensional NbN films
We report the evolution of superconducting properties with disorder, in
3-dimensional homogeneously disordered epitaxial NbN thin films. The effective
disorder in NbN is controlled from moderately clean limit down to Anderson
metal-insulator transition by changing the deposition conditions. We propose a
phase diagram for NbN in temperature-disorder plane. With increasing disorder
we observe that as kFl-->1 the superconducting transition temperature (Tc) and
minimum conductivity (sigma_0) go to zero. The phase diagram shows that in
homogeneously disordered 3-D NbN films, the metal-insulator transition and the
superconductor-insulator transition occur at a single quantum critical point at
kFl~1.Comment: To appear in Journal of Superconductivity and Novel Magnetism
(ICSM2010 proceedings
An open-access database and analysis tool for perovskite solar cells based on the FAIR data principles
Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42, 400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences. © 2021, The Author(s)
Swine manure digestate treatment using electrocoagulation
ABSTRACT Anaerobic biodigestion is an appropriate alternative for the treatment of swine wastewater due to its biogas generation properties and the possibility of its application as a source of energy for heating or electricity. However, digestate can still contain high levels of turbidity, organic carbon and nutrients and must be correctly managed as a biofertilizer, or treated to avoid any impact on the environment. Considering this, electrocoagulation (EC) shows promise as a technology because of its ease of handling and high efficiency in effluent remediation. This study aimed to evaluate the performance of EC in a batch system in the treatment of swine wastewater digestate. The wastewater used in the treatment was sampled from a 10 m3 biodigestor effluent (digestate) located at Concórdia, Santa Catarina, Brazil. A batch-scale experiment was carried out to evaluate the following two variables: electrode distance (ED) and voltage applied (V). The removal efficiency levels (%) for the best operational condition (2 cm, 5 V) after 30 min were: 97 %, 98 %, 77 % and 10 % for color, turbidity, total organic carbon (TOC) and total nitrogen (TN), respectively. The EC batch system produced efficient results, underlining its promise as an alternative to be applied in the treatment of digestate
TRY plant trait database – enhanced coverage and open access
Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
Constraints on the cosmic expansion history from GWTC–3
We use 47 gravitational wave sources from the Third LIGO–Virgo–Kamioka Gravitational Wave Detector Gravitational Wave Transient Catalog (GWTC–3) to estimate the Hubble parameter H(z), including its current value, the Hubble constant H0. Each gravitational wave (GW) signal provides the luminosity distance to the source, and we estimate the corresponding redshift using two methods: the redshifted masses and a galaxy catalog. Using the binary black hole (BBH) redshifted masses, we simultaneously infer the source mass distribution and H(z). The source mass distribution displays a peak around 34 M⊙, followed by a drop-off. Assuming this mass scale does not evolve with the redshift results in a H(z) measurement, yielding (68% credible interval) when combined with the H0 measurement from GW170817 and its electromagnetic counterpart. This represents an improvement of 17% with respect to the H0 estimate from GWTC–1. The second method associates each GW event with its probable host galaxy in the catalog GLADE+, statistically marginalizing over the redshifts of each event's potential hosts. Assuming a fixed BBH population, we estimate a value of with the galaxy catalog method, an improvement of 42% with respect to our GWTC–1 result and 20% with respect to recent H0 studies using GWTC–2 events. However, we show that this result is strongly impacted by assumptions about the BBH source mass distribution; the only event which is not strongly impacted by such assumptions (and is thus informative about H0) is the well-localized event GW190814
GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object
We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45
41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The
dimensionless spin of the primary black hole is tightly constrained to �0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources
that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries
Logging and indigenous hunting impacts on persistence of large Neotropical animals
Areas allocated for industrial logging and community-owned forests account for over 50% of all remaining tropical forests. Landscapescale conservation strategies that include these forests are expected to have substantial benefits for biodiversity, especially for large mammals and birds that require extensive habitat but that are susceptible to extirpation due to synergies between logging and hunting. In addition, their responses to logging alone are poorly understood due to their cryptic behavior and low densities. In this study, we assessed the effects of logging and hunting on detection and occupancy rates of large vertebrates in a multiple- use forest on the Guiana Shield. Our study site was certified as being responsibly managed for timber production and indigenous communities are legally guaranteed use-rights to the forest. We coupled camera-trap data for wildlife detection with a spatially explicit dataset on indigenous hunting. A multi-species occupancy model found a weak positive effect of logging on occupancy and detection rates, while hunting had a weak negative effect. Model predictions of species richness were also higher in logged forest sites compared to unlogged forest sites. Density estimates for jaguars and ocelots in our multiple- use area were similar to estimates reported for fully protected areas. Involvement of local communities in forest management, control of forest access, and nesting production forests in a landscape that includes protected areas seemed important for these positive biodiversity outcomes. The maintenance of vertebrate species bodes well for both biodiversity and the humans that depend on multiple- use forests
Data from: Logging and indigenous hunting impacts on persistence of large Neotropical animals
Areas allocated for industrial logging and community-owned forests account for over 50% of all remaining tropical forests. Landscape-scale conservation strategies that include these forests are expected to have substantial benefits for biodiversity, especially for large mammals and birds that require extensive habitat but that are susceptible to extirpation due to synergies between logging and hunting. In addition, their responses to logging alone are poorly understood due to their cryptic behavior and low densities. In this study, we assessed the effects of logging and hunting on detection and occupancy rates of large vertebrates in a multiple-use forest on the Guiana Shield. Our study site was certified as being responsibly managed for timber production and indigenous communities are legally guaranteed use-rights to the forest. We coupled camera-trap data for wildlife detection with a spatially explicit dataset on indigenous hunting. A multi-species occupancy model found a weak positive effect of logging on occupancy and detection rates, while hunting had a weak negative effect. Model predictions of species richness were also higher in logged forest sites compared to unlogged forest sites. Density estimates for jaguars and ocelots in our multiple-use area were similar to estimates reported for fully protected areas. Involvement of local communities in forest management, control of forest access, and nesting production forests in a landscape that includes protected areas seemed important for these positive biodiversity outcomes. The maintenance of vertebrate species bodes well for both biodiversity and the humans that depend on multiple-use forests
- …