8 research outputs found

    Front-end process modeling in silicon

    No full text
    Front-end processing mostly deals with technologies associated to junction formation in semiconductor devices. Ion implantation and thermal anneal models are key to predict active dopant placement and activation. We review the main models involved in process simulation, including ion implantation, evolution of point and extended defects, amorphization and regrowth mechanisms, and dopant-defect interactions. Hierarchical simulation schemes, going from fundamental calculations to simplified models, are emphasized in this Colloquium. Although continuum modeling is the mainstream in the semiconductor industry, atomistic techniques are starting to play an important role in process simulation for devices with nanometer size features. We illustrate in some examples the use of atomistic modeling techniques to gain insight and provide clues for process optimization

    Relationship Between Anti-DFS70 Autoantibodies and Oxidative Stress

    Get PDF
    Background: The anti-DFS70 autoantibodies are one of the most commonly and widely described agent of unknown clinical significance, frequently detected in healthy individuals. It is not known whether the DFS70 autoantibodies are protective or pathogenic. One of the factors suspected of inducing the formation of anti-DFS70 antibodies is increased oxidative stress. We evaluated the coexistence of anti-DFS70 antibodies with selected markers of oxidative stress and investigated whether these antibodies could be considered as indirect markers of oxidative stress. Methods: The intensity of oxidative stress was measured in all samples via indices of free-radical damage to lipids and proteins such as total oxidant status (TOS), concentrations of lipid hydroperoxides (LPH), lipofuscin (LPS), and malondialdehyde (MDA). The parameters of the non-enzymatic antioxidant system, such as total antioxidant status (TAS) and uric acid concentration (UA), were also measured, as well as the activity of superoxide dismutase (SOD). Based on TOS and TAS values, the oxidative stress index (OSI) was calculated. All samples were also tested with indirect immunofluorescence assay (IFA) and 357 samples were selected for direct monospecific anti DFS70 enzyme-linked immunosorbent assay (ELISA) testing. Results:: The anti-DFS70 antibodies were confirmed by ELISA test in 21.29% of samples. Compared with anti-DFS70 negative samples we observed 23% lower concentration of LPH (P = .038) and 11% lower concentration of UA (P = .005). TOS was 20% lower (P = .014). The activity of SOD was up to 5% higher (P = .037). The Pearson correlation showed weak negative correlation for LPH, UA, and TOS and a weak positive correlation for SOD activity. Conclusion: In samples positive for the anti-DFS70 antibody a decreased level of oxidative stress was observed, especially in the case of samples with a high antibody titer. Anti-DFS70 antibodies can be considered as an indirect marker of reduced oxidative stress or a marker indicating the recent intensification of antioxidant processes

    Lipid levels, atrial fibrillation and the impact of age: Results from the LIPIDOGRAM2015 study

    No full text

    Bibliography

    No full text
    corecore