38 research outputs found
A Re-examination of the Portevin-Le Chatelier Effect in Alloy 718 in Connection with Oxidation-Assisted Intergranular Cracking
In Alloy 718, a sharp transition exists in the fracture path changing from an intergranular brittle mode to a transgranular ductile mode which is associated with a transition of flow behavior from smooth in the dynamic strain aging regime to a serrated one in the Portevin-Le Chatelier (PLC) regime. In order to better understand both deformation and rupture behavior, PLC phenomenon in a precipitation-hardened nickel-base superalloy was carefully investigated in a wide range of temperatures [573 K to 973 K (300°C to 700°C)] and strain rates (109^-5 to 3.2910^-2 s^-1 ). Distinction was made between two PLC domains characterized by different evolutions of the critical strain to the onset of the first serration namely normal and inverse behavior. The apparent activation energies associated with both domains were determined using different methods. Results showed that normal and inverse behavior domains are related to dynamic interaction of dislocations with, respectively, interstitial and substitutional solutes atoms. This analysis confirms that normal PLC regime may be associated to the diffusion of carbon atoms, whereas the substitutional species involves in the inverse regime is discussed with an emphasis on the role of Nb and Mo
Microstructural and Chemical Rejuvenation of a Ni-Based Superalloy
This is an open access article published by Springer and distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), http://creativecommons.org/licenses/by/4.0/The microstructural evolution of the Ni-based superalloy CMSX-4 including the change in gamma prime morphology, size and distribution after high temperature degradation and subsequent rejuvenation heat treatments has been examined using field emission gun scanning electron microscopy (FEGSEM) and transmission electron microscopy (TEM). In this paper it is shown that there are significant differences in the size of the ‘channels’ between gamma prime particles, the degree of rafting and the size of tertiary gamma prime particles in each of the different microstructural conditions studied. Chemical analysis has been carried out to compare rejuvenated and pre-service samples after the same subsequent degradation procedure. The results indicate that although the microstructure of pre-service and rejuvenated samples are similar, chemical differences are more pronounced in the rejuvenated samples, suggesting that chemical segregation from partitioning of the elements was not completely eliminated through the applied rejuvenation heat treatment. A number of modified rejuvenation heat treatment trials were carried out to reduce the chemical segregation prior to creep testing. The creep test results suggest that chemical segregation has an
immeasurable influence on the short-term mechanical properties under the test conditions used here, indicating that further work is required to fully understand the suitability of specific rejuvenation heat treatments and their role in the extension of component life in power plant applications
Atomic Species Associated with the Portevin–Le Chatelier Effect in Superalloy 718 Studied by Mechanical Spectroscopy
In many Ni-based superalloys, dynamic strain aging (DSA) generates an inhomogeneous plastic deformation resulting in jerky flow known as the Portevin--Le Chatelier (PLC) effect. This phenomenon has a deleterious effect on the mechanical properties and, at high temperature, is related to the diffusion of substitutional solute atoms toward the core of dislocations. However, the question about the nature of the atomic species responsible for the PLC effect at high temperature still remains open. The goal of the present work is to answer this important question; to this purpose, three different 718-type and a 625 superalloy were studied through a nonconventional approach by mechanical spectroscopy. The internal friction (IF) spectra of all the studied alloys show a relaxation peak P718 (at 885 K for 0.1 Hz) in the same temperature range, 700 K to 950 K, as the observed PLC effect. The activation parameters of this relaxation peak have been measured, Ea(P718){\thinspace}={\thinspace}2.68{\thinspace}{\textpm}{\thinspace}0.05 eV, 0{\thinspace}={\thinspace}2{\textperiodcentered}10-15 {\textpm} 1 s as well as its broadening factor {\thinspace}={\thinspace}1.1. Experiments on different alloys and the dependence of the relaxation strength on the amount of Mo attribute this relaxation to the stress-induced reorientation of Mo-Mo dipoles due to the short distance diffusion of one Mo atom by exchange with a vacancy. Then, it is concluded that Mo is the atomic species responsible for the high-temperature PLC effect in 718 superallo
Modeling of Microstructural Evolution in an MCrAlY Overlay Coating on Different Superalloy Substrates
Copyright 2011 ASM International and The Minerals, Metals & Materials Society. This paper was published in Metallurgical and Materials Transactions A, Vol. 43, Issue 2, pp. 774-788 and is made
available as an electronic reprint with the permission of ASM International. One print or electronic copy may
be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via
electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or
modification of the content of this paper are prohibited.A multicomponent, one-dimensional diffusion model that was developed for simulating microstructure evolution in coated gas turbine blade systems has been used to compare the phase structures of three MCrAlY coated superalloy systems. The model is based on finite differences and incorporates oxidation and equilibrium thermodynamic computations. The superalloy substrates considered were the nickel-based superalloy CMSX-4, a high-Cr single-crystal superalloy, and a cobalt-based MAR-M509, and these were all coated with an MCrAlY bond coat of similar composition. The results predicted by the model have been compared with similar experimental systems. The model can predict many features observed experimentally and therefore can be expected to be a useful tool in lifetime prediction and microstructural assessment of turbine blade systems based on superalloys. The work also highlighted the fact that for a given coating, the phase evolution within system is dependent on the substrate material
Effect of point defect injection on diffusion of boron in silicon and silicon-germanium in the presence of carbon
Boron diffusion in Si and strained SiGe with and without C was studied using point defect injection.Interstitial-, vacancy- and noninjection conditions were achieved by annealing Si capping layers which were either bare, with Si3N4 film or with Si3N4+SiO2 bilayers, respectively. Concentration profiles of B, Ge, and C were obtained using secondary-ion-mass spectrometry and diffusion coefficients of B in each type of matrix were extracted by computer simulation. Under inert annealing, we find that C strongly suppresses B diffusion in SiGe:C, but the effect of C is less strong in Si:C, particularly at high temperatures. In contrast, C only weakly suppresses B diffusion in both Si:C and SiGe:C under interstitial injection. For inert anneal conditions, C reduces the B diffusion coefficient in Si:C by factors of 4.2, 5.9, and 1.9 at 940, 1000, and 1050 °C respectively, whereas for interstitial injection the factors are 2.1, 1.3, and 1.1, respectively. The equivalent factors for SiGe:C are 8.4, 5.9, and 8.0 for inert anneal conditions and 2.2, 3.4, and 1.6 for interstitial injection conditions. The degree of B diffusion suppression achieved in both Si:C and SiGe:C is dependent on the level of C retained during annealing. Diffusion of C is shown to be faster in Si:C and hence less C is retained there after annealing than in SiGe:C. Interstitial injection is shown to strongly enhance C diffusion in both Si:C and SiGe:C and hence decreases the effectiveness of C for B diffusion suppression. These findings illustrate that the retarding effect of C on B diffusion in both Si:C and SiGe:C is strongly reduced when the anneal is carried out under conditions where interstitials are injected from the surface