676 research outputs found

    General Relativistic Singularity-Free Cosmological Model

    Full text link
    We "explain", using a Classical approach, how the Universe was created out of "nothing", i.e., with no input of initial energy nor mass. The inflationary phase, with exponential expansion, is accounted for, automatically, by our equation of state for the very early Universe. This is a Universe with no-initial infinite singularity of energy density.Comment: Astrophysics and Space Science, 321,157 (2009

    Entropy of the Universe

    Full text link
    After a discussion on several limiting cases where General Relativity turns into less sophisticated theories, we find that in the correct thermodynamical and cosmological weak field limit of Einstein's field equations the entropy of the Universe is R^(3/2) -- dependent, where R stands for the radius of the causally related Universe. Thus, entropy grows in the Universe, contrary to Standard Cosmology prediction.Comment: To be published by International Journal of Theoretical Physic

    Inflationary phase in Generalized Brans-Dicke theory

    Full text link
    We find a solution for exponential inflation in a Brans-Dicke generalized model, where the coupling "constant " is variable. While in General Relativity the equation of state is p is equal to minus rho, here we find p proportional to rho, where the proportionality constant is smaller than -2/3. The negativity of cosmic pressure implies acceleration of the expansion, even with lambda < 0 >.Comment: International Journal of Theoretical Physics, to be publishe

    Biomolecular sensing using surface micromachined silicon plates

    Get PDF
    Micromachined sensors to detect surface stress changes associated with interactions between an immobilized chemically selective receptor and a target analyte are presented. The top isolated sensing surface of a free-standing silicon plate is prepared with a thin Au layer, followed by a covalent attachment of chemical or biomolecule forming a chemically-selective surface. Surface stress changes in air are measured capacitively due to the formation of an alkanethiol self-assembled monolayer (SAM). Detection of biomolecular binding in liquid samples is measured optically using the streptavidin-biotin complex and AM. tuberculosis antigen-antibody system used for clinical tuberculosis (TB) diagnosis

    Natural Entropy Production in an Inflationary Model for a Polarized Vacuum

    Get PDF
    Though entropy production is forbidden in standard FRW Cosmology, Berman and Som presented a simple inflationary model where entropy production by bulk viscosity, during standard inflation without ad hoc pressure terms can be accommodated with Robertson-Walker's metric, so the requirement that the early Universe be anisotropic is not essential in order to have entropy growth during inflationary phase, as we show. Entropy also grows due to shear viscosity, for the anisotropic case. The intrinsically inflationary metric that we propose can be thought of as defining a polarized vacuum, and leads directly to the desired effects without the need of introducing extra pressure terms.Comment: 7 pages including front one. Accepted to publication, Astrophysics and Space Science, subjected to a minor correction, already submitte

    Pryce-Hoyle Tensor in a Combined Einstein-Cartan-Brans-Dicke Model

    Full text link
    In addition to introducing matter injection through a scalar field determined by Pryce-Hoyle tensor, we also combine it with a BCDE (Brans-Dicke-Einstein-Cartan) theory with lambdaterm developed earlier by Berman(2008), for inflationary scenario. It involves a variable cosmological constant, which decreases with time, jointly with energy density, cosmic pressure, shear, vorticity, and Hubble's parameter, while the scale factor, total spin and scalar field increase exponentially. The post-inflationary fluid resembles a perfect one, though total spin grows, but not the angular speed (Berman, 2007d). The Pryce-Hoyle tensor, which can measured by the number of injected particles per unit proper volume and time, as well as shear and vorticity, can be neglected in the aftermath of inflation ("no-hair").Comment: 16 pages including front cover. New version, accepted by International Journal of Theoretical Physics. To be published soo

    Damping of Tensor Modes in Cosmology

    Full text link
    An analytic formula is given for the traceless transverse part of the anisotropic stress tensor due to free streaming neutrinos, and used to derive an integro-differential equation for the propagation of cosmological gravitational waves. The solution shows that anisotropic stress reduces the squared amplitude by 35.6 % for wavelengths that enter the horizon during the radiation-dominated phase, independent of any cosmological parameters. This decreases the tensor temperature and polarization correlation functions for these wavelengths by the same amount. The effect is less for wavelengths that enter the horizon at later times. At the longest wavelengths the decrease in the tensor correlation functions due to neutrino free streaming ranges from 10.7% for ΩMh2=0.1\Omega_Mh^2=0.1 to 9.0% for ΩMh2=0.15\Omega_Mh^2=0.15. An Appendix gives a general proof that tensor as well as scalar modes satisfy a conservation law for perturbations outside the horizon, even when the anisotropic stress tensor is not negligible.Comment: 14 pages. The original version of this paper has been expanded to deal with perturbations of any wavelength. While for wavelengths short enough to enter the horizon during radiation dominance, temperature and polarization correlations are damped by 35.6%, at the longest wavelengths the damping is from 9.0% to 11%. An added Appendix gives a general proof that tensor as well as scalar modes satisfy a conservation law outside the horizon, even during neutrino decoupling. Some references are also adde

    Supernovae as a probe of particle physics and cosmology

    Get PDF
    It has very recently been demonstrated by Csaki, Kaloper and Terning (CKT) that the faintness of supernovae at high redshift can be accommodated by mixing of a light axion with the photon in the presence of an intergalactic magnetic field, as opposed to the usual explanation of an accelerating universe by a dark energy component. In this paper we analyze further aspects of the CKT mechanism and its generalizations. The CKT mechanism also passes various cosmological constraints from the fluctuations of the CMB and the formation of structure at large scales, without requiring an accelerating phase in the expansion of the Universe. We investigate the statistical significance of current supernova data for pinning down the different components of the cosmological energy-momentum tensor and for probing physics beyond the standard models.Comment: 17 pages, LaTeX, 4 figures; v2: typos corrected, minor changes, references added; v3: updated figures, details regarding fits include

    Axion-induced oscillations of cooperative electric field in a cosmic magneto-active plasma

    Full text link
    We consider one cosmological application of an axionic extension of the Maxwell-Vlasov theory, which describes axionically induced oscillatory regime in the state of global magnetic field evolving in the anisotropic expanding (early) universe. We show that the cooperative electric field in the relativistic plasma, being coupled to the pseudoscalar (axion) and global magnetic fields, plays the role of a regulator in this three-level system; in particular, the cooperative (Vlasov) electric field converts the regime of anomalous growth of the pseudoscalar field, caused by the axion-photon coupling at the inflationary epoch of the universe expansion, into an oscillatory regime with finite density of relic axions. We analyze solutions to the dispersion equations for the axionically induced cooperative oscillations of the electric field in the relativistic plasma.Comment: 7 pages, misprints correcte

    Helicity conservation and factorization-suppressed charmless B decays

    Get PDF
    Toward the goal of extracting the weak angle alpha, the decay B^0/B^0-bar to a_0^{+/-}pi^{-/+} was recently measured. The decay B^0 to a_0^+pi^- is not only forbidden in the factorization limit of the tree interaction, but also strongly suppressed for the penguin interaction if short-distance QCD dominates. This makes extraction of alpha very difficult from a^{+/-}\pi^{-/+}. We examine the simlar factorization-suppressed decays, in particular, B^0\to b_1^+pi^-. The prospect of obtaining alpha is even less promising with b_1^{+/-}pi^{-/+}. To probe how well the short-distance dominance works, we emphasize importance of testing helicity conservation in the charmless B decays with spins.Comment: The version to appear in Phys. Rev. D after minor alteration
    • …
    corecore